Semi-Inverse Solution of a Pure Beam Bending Problem in Gradient Elasticity Theory: The Absence of Scale Effects

The semi-inverse solutions of pure beam bending problems within the three-dimensional formulation of gradient elasticity theory as exact tests for the problem of estimating the efficient bending stiffness of so-called scale-dependent thin beams and plates due to the necessity of modeling sensing dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. a journal of the Russian Academy of Sciences. Physics 2018-04, Vol.63 (4), p.161-164
Hauptverfasser: Lomakin, E. V., Lurie, S. A., Rabinskiy, L. N., Solyaev, Y. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The semi-inverse solutions of pure beam bending problems within the three-dimensional formulation of gradient elasticity theory as exact tests for the problem of estimating the efficient bending stiffness of so-called scale-dependent thin beams and plates due to the necessity of modeling sensing devices are presented. It is shown that the solutions within the gradient elasticity theory give classic beam bending stiffnesses and demonstrate the invalidity of the widespread results and estimates obtained in the past 15 years during study of scale effects within the gradient beam theories, according to which the relative bending stiffness grows by a hyperbolic law with decreasing thickness.
ISSN:1028-3358
1562-6903
DOI:10.1134/S1028335818040031