Peak shear strength prediction for discontinuities between two different rock types using a neural network approach
The peak shear strength of discontinuities between two different rock types is essential to evaluate the stability of a rock slope with interlayered rocks. However, current research has paid little attention to shear strength parameters of discontinuities with different joint wall compressive streng...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2019-06, Vol.78 (4), p.2315-2329 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The peak shear strength of discontinuities between two different rock types is essential to evaluate the stability of a rock slope with interlayered rocks. However, current research has paid little attention to shear strength parameters of discontinuities with different joint wall compressive strength (DDJCS). In this paper, a neural network methodology was used to predict the peak shear strength of DDJCS considering the effect of joint wall strength combination, normal stress and joint roughness. The database was developed by laboratory direct shear tests on artificial joint specimens with seven different joint wall strength combinations, four designed joint surface topographies and six types of normal stresses. A part of the experimental data was used to train a back-propagation neural network model with a single-hidden layer. The remaining experimental data was used to validate the trained neural network model. The best geometry of the neural network model was determined by the trial-and-error method. For the same data, multivariate regression analysis was also conducted to predict the peak shear strength of DDJCS. Prediction precision of the neural network model and multivariate regression model was evaluated by comparing the predicted peak shear strength of DDJCS with experimental data. The results showed that the capability of the developed neural network model was strong and better than the multivariate regression model. Finally, the established neural network model was applied in the stability evaluation of a typical rock slope with DDJCS as the critical surface in the Badong formation of China. |
---|---|
ISSN: | 1435-9529 1435-9537 |
DOI: | 10.1007/s10064-018-1290-x |