Some Ramsey Schur Numbers

The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2005-01, Vol.14 (1-2), p.25-30
Hauptverfasser: BODE, JENS-P., GRONAU, HANS-DIETRICH O. F., HARBORTH, HEIKO
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1-2
container_start_page 25
container_title Combinatorics, probability & computing
container_volume 14
creator BODE, JENS-P.
GRONAU, HANS-DIETRICH O. F.
HARBORTH, HEIKO
description The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.
doi_str_mv 10.1017/S0963548304006595
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_203964843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548304006595</cupid><sourcerecordid>1397643781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3997e8ce6410be6ad2159472f10548bbb787a01e321a405b770366276f1fbbd73</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYj-AG7E--pMP6bboyECJogR9Ny0S1dB18WWTeTfuwSiB-NpDu_HM3kZ6yFcIaC-noMhoWQuQAKQMuqIdVCSyTiSOGadnZzt9FN2ltIKAJQi6LDevK5Cf-aqFLb9efHaxP60qXyI6ZydlO49hYvD7bLn4e3TYJxNHkZ3g5tJVrS8TSaM0SEvAkkEH8gtOCojNS8RWpz3XufaAQbB0UlQXmsQRFxTiaX3Cy267HLfu471ZxPSxq7qJn60SMtBGJK5FK0J96Yi1inFUNp1XFYubi2C3Q1g_wzQZrJ9Zpk24esn4OKbJS20sjR6tPczVMPpwFje-sWB4Sofl4uX8PvJ_5Rvn5toSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203964843</pqid></control><display><type>article</type><title>Some Ramsey Schur Numbers</title><source>Cambridge University Press Journals Complete</source><creator>BODE, JENS-P. ; GRONAU, HANS-DIETRICH O. F. ; HARBORTH, HEIKO</creator><creatorcontrib>BODE, JENS-P. ; GRONAU, HANS-DIETRICH O. F. ; HARBORTH, HEIKO</creatorcontrib><description>The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548304006595</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Combinatorics, probability &amp; computing, 2005-01, Vol.14 (1-2), p.25-30</ispartof><rights>2005 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3997e8ce6410be6ad2159472f10548bbb787a01e321a405b770366276f1fbbd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548304006595/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>BODE, JENS-P.</creatorcontrib><creatorcontrib>GRONAU, HANS-DIETRICH O. F.</creatorcontrib><creatorcontrib>HARBORTH, HEIKO</creatorcontrib><title>Some Ramsey Schur Numbers</title><title>Combinatorics, probability &amp; computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PAjEQhhujiYj-AG7E--pMP6bboyECJogR9Ny0S1dB18WWTeTfuwSiB-NpDu_HM3kZ6yFcIaC-noMhoWQuQAKQMuqIdVCSyTiSOGadnZzt9FN2ltIKAJQi6LDevK5Cf-aqFLb9efHaxP60qXyI6ZydlO49hYvD7bLn4e3TYJxNHkZ3g5tJVrS8TSaM0SEvAkkEH8gtOCojNS8RWpz3XufaAQbB0UlQXmsQRFxTiaX3Cy267HLfu471ZxPSxq7qJn60SMtBGJK5FK0J96Yi1inFUNp1XFYubi2C3Q1g_wzQZrJ9Zpk24esn4OKbJS20sjR6tPczVMPpwFje-sWB4Sofl4uX8PvJ_5Rvn5toSw</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>BODE, JENS-P.</creator><creator>GRONAU, HANS-DIETRICH O. F.</creator><creator>HARBORTH, HEIKO</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200501</creationdate><title>Some Ramsey Schur Numbers</title><author>BODE, JENS-P. ; GRONAU, HANS-DIETRICH O. F. ; HARBORTH, HEIKO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3997e8ce6410be6ad2159472f10548bbb787a01e321a405b770366276f1fbbd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BODE, JENS-P.</creatorcontrib><creatorcontrib>GRONAU, HANS-DIETRICH O. F.</creatorcontrib><creatorcontrib>HARBORTH, HEIKO</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BODE, JENS-P.</au><au>GRONAU, HANS-DIETRICH O. F.</au><au>HARBORTH, HEIKO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Ramsey Schur Numbers</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2005-01</date><risdate>2005</risdate><volume>14</volume><issue>1-2</issue><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548304006595</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 2005-01, Vol.14 (1-2), p.25-30
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_journals_203964843
source Cambridge University Press Journals Complete
title Some Ramsey Schur Numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Ramsey%20Schur%20Numbers&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=BODE,%20JENS-P.&rft.date=2005-01&rft.volume=14&rft.issue=1-2&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548304006595&rft_dat=%3Cproquest_cross%3E1397643781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203964843&rft_id=info:pmid/&rft_cupid=10_1017_S0963548304006595&rfr_iscdi=true