Some Ramsey Schur Numbers
The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2005-01, Vol.14 (1-2), p.25-30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ramsey Schur number $RS(s,t)$ is the smallest $n$ such that every 2-colouring of the edges of $K_n$ with vertices $1,2,\ldots,n$ contains a green $K_s$ or there are vertices $x_1,x_2,\ldots,x_t$ fulfilling the equation $x_1+x_2+\cdots+x_{t-1}=x_t$ and all edges $(x_i,x_j)$ are red. We prove $RS(3,3)=11, RS(3,t)=t^2-3$ for $t\equiv1\ (\mbox{mod}\ 6)$ and $t=8$, and $RS(3,t)\geq t^2-3$. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548304006595 |