Triple Systems Not Containing a Fano Configuration

A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest triple system on $n$ vertices containing no Fano configuration is determined (for $n> n_1$). It is 2-chromatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2005-07, Vol.14 (4), p.467-484
Hauptverfasser: FÜREDI, ZOLTÁN, SIMONOVITS, MIKLÓS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest triple system on $n$ vertices containing no Fano configuration is determined (for $n> n_1$). It is 2-chromatic with $\binom{n}{3}-\binom{\lfloor n/2 \rfloor}{3} -\binom{\lceil n/2 \rceil}{3}$ triples. This is one of the very few nontrivial exact results for hypergraph extremal problems.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548305006784