Triple Systems Not Containing a Fano Configuration
A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest triple system on $n$ vertices containing no Fano configuration is determined (for $n> n_1$). It is 2-chromatic...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2005-07, Vol.14 (4), p.467-484 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T. Sós, the largest triple system on $n$ vertices containing no Fano configuration is determined (for $n> n_1$). It is 2-chromatic with $\binom{n}{3}-\binom{\lfloor n/2 \rfloor}{3} -\binom{\lceil n/2 \rceil}{3}$ triples. This is one of the very few nontrivial exact results for hypergraph extremal problems. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548305006784 |