An Isoperimetric Inequality for Planar Triangulations
We prove a discrete analogue to a classical isoperimetric theorem of Weil for surfaces with non-positive curvature. It is shown that hexagons in the triangular lattice have maximal volume among all sets of a given boundary in any triangulation with minimal degree 6.
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2018-06, Vol.59 (4), p.802-809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a discrete analogue to a classical isoperimetric theorem of Weil for surfaces with non-positive curvature. It is shown that hexagons in the triangular lattice have maximal volume among all sets of a given boundary in any triangulation with minimal degree 6. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-017-9942-3 |