An Isoperimetric Inequality for Planar Triangulations

We prove a discrete analogue to a classical isoperimetric theorem of Weil for surfaces with non-positive curvature. It is shown that hexagons in the triangular lattice have maximal volume among all sets of a given boundary in any triangulation with minimal degree 6.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2018-06, Vol.59 (4), p.802-809
Hauptverfasser: Angel, Omer, Benjamini, Itai, Horesh, Nizan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a discrete analogue to a classical isoperimetric theorem of Weil for surfaces with non-positive curvature. It is shown that hexagons in the triangular lattice have maximal volume among all sets of a given boundary in any triangulation with minimal degree 6.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-017-9942-3