Mining pollution triggered a regime shift in the cladoceran community of Lake Kirkkojärvi, southern Finland
Mining is one of the key industries in the world and mine water pollution is a serious threat to aquatic ecosystems. Historical monitoring data on the pollution history and impacts in aquatic ecosystems, however, are rarely available, so paleolimnological methods are required to explore the conseque...
Gespeichert in:
Veröffentlicht in: | Journal of paleolimnology 2018-10, Vol.60 (3), p.413-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mining is one of the key industries in the world and mine water pollution is a serious threat to aquatic ecosystems. Historical monitoring data on the pollution history and impacts in aquatic ecosystems, however, are rarely available, so paleolimnological methods are required to explore the consequences of past pollution. We studied the history of cladoceran community dynamics in Lake Kirkkojärvi, southern Finland, including the periods before, during and after mining. We analyzed the geochemical composition and cladoceran subfossil remains in a
210
Pb-dated sediment core to evaluate the magnitude, rate, and direction of cladoceran community changes through time. The cladoceran community was altered significantly by mining activity that occurred during the mid-twentieth century. During more recent times, however, eutrophication effects have overridden the impacts of mining. After mining ceased, the cladoceran community underwent an abrupt regime shift towards taxa that reflect more eutrophic conditions. This change was caused by intensive farming activity and fertilizer use over the past few decades. The recent history of Lake Kirkkojärvi is a textbook example of a regime shift triggered by multiple human-caused stressors. Our findings also highlight the utility of cladocerans as bio-indicators in pollution research and illustrate the sensitivity of aquatic ecosystems to anthropogenic modification. |
---|---|
ISSN: | 0921-2728 1573-0417 |
DOI: | 10.1007/s10933-018-0030-3 |