Synthesis and coordination studies of 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative
The introduction of a carboxylate function into porphyrins allows a variety of modifications, including coordination and conjugation, which are central to enhance the efficiency of macrocycles in photonic materials and biological applications. Herein, a synthetic strategy to obtain 5-(4′-carboxyphen...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2018, Vol.42 (10), p.8169-8179 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The introduction of a carboxylate function into porphyrins allows a variety of modifications, including coordination and conjugation, which are central to enhance the efficiency of macrocycles in photonic materials and biological applications. Herein, a synthetic strategy to obtain 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative was developed by the 1,3-dipolar cycloaddition of a carbomethoxyphenyl substituted porphyrin with an azomethine ylide, followed by hydrolysis under thermal acidic conditions. The 1,3-dipolar cycloaddition of the carbomethoxyphenyl porphyrin with
N
-methyl nitrone was also performed to give an isomeric mixture of isoxazolidine-fused chlorins, revealing lower selectivity and lower yields; in addition, retrocycloaddition of the isoxazolidine-fused chlorins was observed under the hydrolysis conditions. The resulting carboxyphenyl macrocycles were characterized using
1
H and
19
F NMR, ESI-MS and SC-XRD for 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin. In order to study the influence of coordination to a metal ion on the electronic properties of carboxyphenyl substituted porphyrins, a series of metal complexes of 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative were synthesized by microwave-mediated metallation with Fe(
iii
), Cu(
ii
) and Zn(
ii
) salts. EPR spectroscopy was particularly relevant to the characterization of the Cu(
ii
) complexes of both macrocycles and to study the coordination chemistry of these ligands with Cu(
ii
) ions. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/C7NJ05165D |