The Analysis of Bounded Count Data in Criminology

Background Criminological research utilizes several types of delinquency scales, including frequency counts and, increasingly, variety scores. The latter counts the number of distinct types of crimes an individual has committed. Often, variety scores are modeled via count regression techniques (e.g....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative criminology 2018-06, Vol.34 (2), p.591-607
Hauptverfasser: Britt, Chester L., Rocque, Michael, Zimmerman, Gregory M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Criminological research utilizes several types of delinquency scales, including frequency counts and, increasingly, variety scores. The latter counts the number of distinct types of crimes an individual has committed. Often, variety scores are modeled via count regression techniques (e.g., Poisson, negative binomial), which are best suited to the analysis of unbounded count data. Variety scores, however, are inherently bounded . Methods We review common regression approaches for count data and then advocate for a different, more suitable approach for variety scores—binomial regression, and zero-inflated binomial regression, which allow one to consider variety scores as a series of binomial trials, thus accounting for bounding. We provide a demonstration with two simulations and data from the Fayetteville Youth Study. Conclusions Binomial regression generally performs better than traditional regression models when modeling variety scores. Importantly, the interpretation of binomial regression models is straightforward and related to the more familiar logistic regression. We recommend researchers use binomial regression models when faced with variety delinquency scores.
ISSN:0748-4518
1573-7799
DOI:10.1007/s10940-017-9346-9