Families of locally separated Hamilton paths

We improve by an exponential factor the lower bound of Körner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2018-07, Vol.88 (3), p.402-410
Hauptverfasser: Körner, János, Monti, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We improve by an exponential factor the lower bound of Körner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22220