Local Convergence of Random Graph Colorings

Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2018-04, Vol.38 (2), p.341-380
Hauptverfasser: Coja-Oghlan, Amin, Efthymiou, Charilaos, Jaafari, Nor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 2
container_start_page 341
container_title Combinatorica (Budapest. 1981)
container_volume 38
creator Coja-Oghlan, Amin
Efthymiou, Charilaos
Jaafari, Nor
description Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d k ,cond , the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k 0 . More generally, we investigate the joint distribution of the k -colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.
doi_str_mv 10.1007/s00493-016-3394-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2038030674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729108927</galeid><sourcerecordid>A729108927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-4cce7ac5e91d92a4064346c3f22c69cffdc8a84a4a892dc6ca94057bf1d9fe413</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4G7ApaTe_DQzWZaiVSgIousQ7yR1ynQyJlOpb2_KCK7kLgI338kXDiHXDGYMoLxLAFILCkxRIbSkhxMyYVJoqjTjp2QCHDTVqhLn5CKlLQBUgs0n5HYd0LbFMnRfLm5ch64IvnixXR12xSra_iPftSE23SZdkjNv2-Sufs8peXu4f10-0vXz6mm5WFMUuhqoRHSlxbnTrNbcSlBSSIXCc45Ko_c1VraSVtpK8xoVWi1hXr77HPdOMjElN-O7fQyfe5cGsw372OVKw0FUIECVMqdmY2pjW2eazochWsxTu12DoXO-yftFyTWDXFRmgI0AxpBSdN70sdnZ-G0YmKNEM0o0WaI5SjSHzPCRSf1RgYt_X_kf-gEJVXN-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038030674</pqid></control><display><type>article</type><title>Local Convergence of Random Graph Colorings</title><source>Springer Online Journals Complete</source><creator>Coja-Oghlan, Amin ; Efthymiou, Charilaos ; Jaafari, Nor</creator><creatorcontrib>Coja-Oghlan, Amin ; Efthymiou, Charilaos ; Jaafari, Nor</creatorcontrib><description>Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d k ,cond , the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k 0 . More generally, we investigate the joint distribution of the k -colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-016-3394-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorics ; Graph coloring ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Combinatorica (Budapest. 1981), 2018-04, Vol.38 (2), p.341-380</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-4cce7ac5e91d92a4064346c3f22c69cffdc8a84a4a892dc6ca94057bf1d9fe413</citedby><cites>FETCH-LOGICAL-c398t-4cce7ac5e91d92a4064346c3f22c69cffdc8a84a4a892dc6ca94057bf1d9fe413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-016-3394-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-016-3394-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Coja-Oghlan, Amin</creatorcontrib><creatorcontrib>Efthymiou, Charilaos</creatorcontrib><creatorcontrib>Jaafari, Nor</creatorcontrib><title>Local Convergence of Random Graph Colorings</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d k ,cond , the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k 0 . More generally, we investigate the joint distribution of the k -colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.</description><subject>Combinatorics</subject><subject>Graph coloring</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4G7ApaTe_DQzWZaiVSgIousQ7yR1ynQyJlOpb2_KCK7kLgI338kXDiHXDGYMoLxLAFILCkxRIbSkhxMyYVJoqjTjp2QCHDTVqhLn5CKlLQBUgs0n5HYd0LbFMnRfLm5ch64IvnixXR12xSra_iPftSE23SZdkjNv2-Sufs8peXu4f10-0vXz6mm5WFMUuhqoRHSlxbnTrNbcSlBSSIXCc45Ko_c1VraSVtpK8xoVWi1hXr77HPdOMjElN-O7fQyfe5cGsw372OVKw0FUIECVMqdmY2pjW2eazochWsxTu12DoXO-yftFyTWDXFRmgI0AxpBSdN70sdnZ-G0YmKNEM0o0WaI5SjSHzPCRSf1RgYt_X_kf-gEJVXN-</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Coja-Oghlan, Amin</creator><creator>Efthymiou, Charilaos</creator><creator>Jaafari, Nor</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Local Convergence of Random Graph Colorings</title><author>Coja-Oghlan, Amin ; Efthymiou, Charilaos ; Jaafari, Nor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-4cce7ac5e91d92a4064346c3f22c69cffdc8a84a4a892dc6ca94057bf1d9fe413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Graph coloring</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coja-Oghlan, Amin</creatorcontrib><creatorcontrib>Efthymiou, Charilaos</creatorcontrib><creatorcontrib>Jaafari, Nor</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coja-Oghlan, Amin</au><au>Efthymiou, Charilaos</au><au>Jaafari, Nor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Convergence of Random Graph Colorings</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>38</volume><issue>2</issue><spage>341</spage><epage>380</epage><pages>341-380</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d k ,cond , the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k 0 . More generally, we investigate the joint distribution of the k -colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-016-3394-x</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0209-9683
ispartof Combinatorica (Budapest. 1981), 2018-04, Vol.38 (2), p.341-380
issn 0209-9683
1439-6912
language eng
recordid cdi_proquest_journals_2038030674
source Springer Online Journals Complete
subjects Combinatorics
Graph coloring
Mathematics
Mathematics and Statistics
Original Paper
title Local Convergence of Random Graph Colorings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Convergence%20of%20Random%20Graph%20Colorings&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Coja-Oghlan,%20Amin&rft.date=2018-04-01&rft.volume=38&rft.issue=2&rft.spage=341&rft.epage=380&rft.pages=341-380&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-016-3394-x&rft_dat=%3Cgale_proqu%3EA729108927%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038030674&rft_id=info:pmid/&rft_galeid=A729108927&rfr_iscdi=true