Local Convergence of Random Graph Colorings

Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2018-04, Vol.38 (2), p.341-380
Hauptverfasser: Coja-Oghlan, Amin, Efthymiou, Charilaos, Jaafari, Nor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d k ,cond , the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k 0 . More generally, we investigate the joint distribution of the k -colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-016-3394-x