Local Convergence of Random Graph Colorings
Let G = G ( n , m ) be a random graph whose average degree d = 2 m / n is below the k -colorability threshold. If we sample a k -coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from stat...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2018-04, Vol.38 (2), p.341-380 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
G
(
n
,
m
) be a random graph whose average degree
d
= 2
m
/
n
is below the
k
-colorability threshold. If we sample a
k
-coloring
σ
of
G
uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called
condensation threshold d
k
,cond
, the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for
k
exceeding a certain constant
k
0
. More generally, we investigate the joint distribution of the
k
-colorings that
σ
induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the
reconstruction problem. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-016-3394-x |