Smoothing properties of McKean–Vlasov SDEs

In this article, we develop integration by parts formulae on Wiener space for solutions of SDEs with general McKean–Vlasov interaction and uniformly elliptic coefficients. These integration by parts formulae hold both for derivatives with respect to a real variable and derivatives with respect to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2018-06, Vol.171 (1-2), p.97-148
Hauptverfasser: Crisan, Dan, McMurray, Eamon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we develop integration by parts formulae on Wiener space for solutions of SDEs with general McKean–Vlasov interaction and uniformly elliptic coefficients. These integration by parts formulae hold both for derivatives with respect to a real variable and derivatives with respect to a measure understood in the sense of Lions. They allows us to prove the existence of a classical solution to a related PDE with irregular terminal condition. We also develop bounds for the derivatives of the density of the solutions of McKean–Vlasov SDEs.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-017-0774-0