Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds
We consider inverse problems in space–time ( M , g ), a 4-dimensional Lorentzian manifold. For semilinear wave equations □ g u + H ( x , u ) = f , where □ g denotes the usual Laplace–Beltrami operator, we prove that the source-to-solution map L : f → u | V , where V is a neighborhood of a time-like...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2018-06, Vol.360 (2), p.555-609 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider inverse problems in space–time (
M
,
g
), a 4-dimensional Lorentzian manifold. For semilinear wave equations
□
g
u
+
H
(
x
,
u
)
=
f
, where
□
g
denotes the usual Laplace–Beltrami operator, we prove that the source-to-solution map
L
:
f
→
u
|
V
, where
V
is a neighborhood of a time-like geodesic
μ
, determines the topological, differentiable structure and the conformal class of the metric of the space–time in the maximal set, where waves can propagate from
μ
and return back. Moreover, on a given space–time (
M
,
g
), the source-to-solution map determines some coefficients of the Taylor expansion of
H
in
u
. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-018-3135-7 |