Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds

We consider inverse problems in space–time ( M , g ), a 4-dimensional Lorentzian manifold. For semilinear wave equations □ g u + H ( x , u ) = f , where □ g denotes the usual Laplace–Beltrami operator, we prove that the source-to-solution map L : f → u | V , where V is a neighborhood of a time-like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2018-06, Vol.360 (2), p.555-609
Hauptverfasser: Lassas, Matti, Uhlmann, Gunther, Wang, Yiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider inverse problems in space–time ( M , g ), a 4-dimensional Lorentzian manifold. For semilinear wave equations □ g u + H ( x , u ) = f , where □ g denotes the usual Laplace–Beltrami operator, we prove that the source-to-solution map L : f → u | V , where V is a neighborhood of a time-like geodesic μ , determines the topological, differentiable structure and the conformal class of the metric of the space–time in the maximal set, where waves can propagate from μ and return back. Moreover, on a given space–time ( M , g ), the source-to-solution map determines some coefficients of the Taylor expansion of H in u .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-018-3135-7