Highly thermal-stable and transparent silver nanowire conductive films via magnetic assisted electrodeposition of Ni
In this study, a magnetic assisted electrodeposition process was developed to fabricate a hybrid silver nanowire conductive film with excellent performance. In the two-step fabrication process, the primary conductive film was dip-coated with a low concentration of AgNW ink, which gives decent conduc...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (18), p.4887-4894 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a magnetic assisted electrodeposition process was developed to fabricate a hybrid silver nanowire conductive film with excellent performance. In the two-step fabrication process, the primary conductive film was dip-coated with a low concentration of AgNW ink, which gives decent conductivity and extraordinary transmittance. It is worth noting that the highly diluted ink solution is superior to a high concentration of silver nanowire ink, which is prone to aggregate and hard to redisperse. Next, a magnetic assisted electrodeposition process was applied to in situ grow a secondary metallic layer onto AgNWs, leading to a much better conductivity while maintaining the high transmittance, which well reconciles the contradictive requirements between transmittance and conductivity. Especially, thanks to the magnetic tuning effect, a unique Ni protective layer was formed to achieve prominent adhesion on the substrate without embedding the structure into any material. The conductivity of the Ni/AgNW-based TCFs has no obvious change even after heating at 400 °C for 30 min, which is by far the best thermal stability ever reported. In addition, the excellent electrical and optical performances (a typical sheet resistance of ca. 9.8 Ω sq −1 at a transmittance of ca. 95.3%) outperformed most of the existing AgNW-based TCFs. Two devices, including an HITSZ pattern of LED lights and a nanoheater, were fabricated to demonstrate the feasibility and the outstanding performance. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C8TC00900G |