Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo

Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles (RGD‐PEG‐MNPs) are developed for photoacoustic (PA)‐enabled self‐guidance in tumor‐targeting ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2018-05, Vol.7 (9), p.n/a
Hauptverfasser: Zhou, Ping, Zhao, Heng, Wang, Quan, Zhou, Zhiguo, Wang, Jing, Deng, Guang, Wang, Xiyou, Liu, Qian, Yang, Hong, Yang, Shiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced healthcare materials
container_volume 7
creator Zhou, Ping
Zhao, Heng
Wang, Quan
Zhou, Zhiguo
Wang, Jing
Deng, Guang
Wang, Xiyou
Liu, Qian
Yang, Hong
Yang, Shiping
description Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles (RGD‐PEG‐MNPs) are developed for photoacoustic (PA)‐enabled self‐guidance in tumor‐targeting magnetic hyperthermia therapy in vivo. In the αvβ3‐positive U87MG glioblastoma xenograft model, the PA signal of RGD‐PEG‐MNPs reaches its maximum in the tumor at 6 h after intravenous administration. This signal is enhanced by 2.2‐folds compared to that of the preinjection and is also 2.2 times higher than that in the blocking group. It demonstrates the excellent targeting property of RGD‐PEG‐MNPs. With the guidance of the PA, an effective magnetic hyperthermia to tumor is achieved using RGD‐PEG‐MNPs. A single material‐based nanotheranostic agent of c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles is developed for targeting photoacoustic imaging guided magnetic hyperthermia therapy in the αvβ3‐positive U87MG glioblastoma xenograft model.
doi_str_mv 10.1002/adhm.201701201
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2036329726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036329726</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2991-16986eab7b1d81112e2c445ea74a3ebeb34c5ffe83db5c5aad4b6ce542711f703</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQxhdRsNRePS94Tt3Z3WySm6X2H7RWsHpdNsnEpqRJ3CRKbz6Cz-iTuKXSOczMN_z4Bj5CboENgTF-b9LtfsgZBAxcvyA9DhH3uPKjy_Mu2TUZNM2OuVI-qBB6xD5vq7YySdU1bZ78fv9MShMXmNIXLDInZ12emjJBmpd0Zd5LPFHzQ4223aLd54ZO8WGKYi3pkymr2liHFNjQrLJ04xB3PHo3dFHSt_yzuiFXmSkaHPzPPnmdTjbjubdczxbj0dLb8SgCD1QUKjRxEEMaAgBHnkjpowmkERhjLGTiZxmGIo39xDcmlbFK0Jc8AMgCJvrk7uRb2-qjw6bVu6qzpXupORNK8CjgylHRifrKCzzo2uZ7Yw8amD7mqo-56nOuevQ4X52V-ANMeHIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036329726</pqid></control><display><type>article</type><title>Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo</title><source>Wiley Online Library All Journals</source><creator>Zhou, Ping ; Zhao, Heng ; Wang, Quan ; Zhou, Zhiguo ; Wang, Jing ; Deng, Guang ; Wang, Xiyou ; Liu, Qian ; Yang, Hong ; Yang, Shiping</creator><creatorcontrib>Zhou, Ping ; Zhao, Heng ; Wang, Quan ; Zhou, Zhiguo ; Wang, Jing ; Deng, Guang ; Wang, Xiyou ; Liu, Qian ; Yang, Hong ; Yang, Shiping</creatorcontrib><description>Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles (RGD‐PEG‐MNPs) are developed for photoacoustic (PA)‐enabled self‐guidance in tumor‐targeting magnetic hyperthermia therapy in vivo. In the αvβ3‐positive U87MG glioblastoma xenograft model, the PA signal of RGD‐PEG‐MNPs reaches its maximum in the tumor at 6 h after intravenous administration. This signal is enhanced by 2.2‐folds compared to that of the preinjection and is also 2.2 times higher than that in the blocking group. It demonstrates the excellent targeting property of RGD‐PEG‐MNPs. With the guidance of the PA, an effective magnetic hyperthermia to tumor is achieved using RGD‐PEG‐MNPs. A single material‐based nanotheranostic agent of c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles is developed for targeting photoacoustic imaging guided magnetic hyperthermia therapy in the αvβ3‐positive U87MG glioblastoma xenograft model.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201701201</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Fe@Fe3O4 nanoparticles ; Fever ; Glioblastoma ; Hyperthermia ; in vivo theranostics ; Intravenous administration ; Iron oxides ; magnetic hyperthermia ; Nanoparticles ; PA imaging ; Precision medicine ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Advanced healthcare materials, 2018-05, Vol.7 (9), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201701201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201701201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Zhou, Zhiguo</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Deng, Guang</creatorcontrib><creatorcontrib>Wang, Xiyou</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Yang, Shiping</creatorcontrib><title>Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo</title><title>Advanced healthcare materials</title><description>Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles (RGD‐PEG‐MNPs) are developed for photoacoustic (PA)‐enabled self‐guidance in tumor‐targeting magnetic hyperthermia therapy in vivo. In the αvβ3‐positive U87MG glioblastoma xenograft model, the PA signal of RGD‐PEG‐MNPs reaches its maximum in the tumor at 6 h after intravenous administration. This signal is enhanced by 2.2‐folds compared to that of the preinjection and is also 2.2 times higher than that in the blocking group. It demonstrates the excellent targeting property of RGD‐PEG‐MNPs. With the guidance of the PA, an effective magnetic hyperthermia to tumor is achieved using RGD‐PEG‐MNPs. A single material‐based nanotheranostic agent of c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles is developed for targeting photoacoustic imaging guided magnetic hyperthermia therapy in the αvβ3‐positive U87MG glioblastoma xenograft model.</description><subject>Fe@Fe3O4 nanoparticles</subject><subject>Fever</subject><subject>Glioblastoma</subject><subject>Hyperthermia</subject><subject>in vivo theranostics</subject><subject>Intravenous administration</subject><subject>Iron oxides</subject><subject>magnetic hyperthermia</subject><subject>Nanoparticles</subject><subject>PA imaging</subject><subject>Precision medicine</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQxhdRsNRePS94Tt3Z3WySm6X2H7RWsHpdNsnEpqRJ3CRKbz6Cz-iTuKXSOczMN_z4Bj5CboENgTF-b9LtfsgZBAxcvyA9DhH3uPKjy_Mu2TUZNM2OuVI-qBB6xD5vq7YySdU1bZ78fv9MShMXmNIXLDInZ12emjJBmpd0Zd5LPFHzQ4223aLd54ZO8WGKYi3pkymr2liHFNjQrLJ04xB3PHo3dFHSt_yzuiFXmSkaHPzPPnmdTjbjubdczxbj0dLb8SgCD1QUKjRxEEMaAgBHnkjpowmkERhjLGTiZxmGIo39xDcmlbFK0Jc8AMgCJvrk7uRb2-qjw6bVu6qzpXupORNK8CjgylHRifrKCzzo2uZ7Yw8amD7mqo-56nOuevQ4X52V-ANMeHIm</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Zhou, Ping</creator><creator>Zhao, Heng</creator><creator>Wang, Quan</creator><creator>Zhou, Zhiguo</creator><creator>Wang, Jing</creator><creator>Deng, Guang</creator><creator>Wang, Xiyou</creator><creator>Liu, Qian</creator><creator>Yang, Hong</creator><creator>Yang, Shiping</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180509</creationdate><title>Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo</title><author>Zhou, Ping ; Zhao, Heng ; Wang, Quan ; Zhou, Zhiguo ; Wang, Jing ; Deng, Guang ; Wang, Xiyou ; Liu, Qian ; Yang, Hong ; Yang, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2991-16986eab7b1d81112e2c445ea74a3ebeb34c5ffe83db5c5aad4b6ce542711f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fe@Fe3O4 nanoparticles</topic><topic>Fever</topic><topic>Glioblastoma</topic><topic>Hyperthermia</topic><topic>in vivo theranostics</topic><topic>Intravenous administration</topic><topic>Iron oxides</topic><topic>magnetic hyperthermia</topic><topic>Nanoparticles</topic><topic>PA imaging</topic><topic>Precision medicine</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Zhou, Zhiguo</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Deng, Guang</creatorcontrib><creatorcontrib>Wang, Xiyou</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Yang, Shiping</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ping</au><au>Zhao, Heng</au><au>Wang, Quan</au><au>Zhou, Zhiguo</au><au>Wang, Jing</au><au>Deng, Guang</au><au>Wang, Xiyou</au><au>Liu, Qian</au><au>Yang, Hong</au><au>Yang, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo</atitle><jtitle>Advanced healthcare materials</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>7</volume><issue>9</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles (RGD‐PEG‐MNPs) are developed for photoacoustic (PA)‐enabled self‐guidance in tumor‐targeting magnetic hyperthermia therapy in vivo. In the αvβ3‐positive U87MG glioblastoma xenograft model, the PA signal of RGD‐PEG‐MNPs reaches its maximum in the tumor at 6 h after intravenous administration. This signal is enhanced by 2.2‐folds compared to that of the preinjection and is also 2.2 times higher than that in the blocking group. It demonstrates the excellent targeting property of RGD‐PEG‐MNPs. With the guidance of the PA, an effective magnetic hyperthermia to tumor is achieved using RGD‐PEG‐MNPs. A single material‐based nanotheranostic agent of c(RGDyK) peptide PEGylated Fe@Fe3O4 nanoparticles is developed for targeting photoacoustic imaging guided magnetic hyperthermia therapy in the αvβ3‐positive U87MG glioblastoma xenograft model.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.201701201</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2018-05, Vol.7 (9), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_journals_2036329726
source Wiley Online Library All Journals
subjects Fe@Fe3O4 nanoparticles
Fever
Glioblastoma
Hyperthermia
in vivo theranostics
Intravenous administration
Iron oxides
magnetic hyperthermia
Nanoparticles
PA imaging
Precision medicine
Tumors
Xenografts
Xenotransplantation
title Photoacoustic‐Enabled Self‐Guidance in Magnetic‐Hyperthermia Fe@Fe3O4 Nanoparticles for Theranostics In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoacoustic%E2%80%90Enabled%20Self%E2%80%90Guidance%20in%20Magnetic%E2%80%90Hyperthermia%20Fe@Fe3O4%20Nanoparticles%20for%20Theranostics%20In%20Vivo&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zhou,%20Ping&rft.date=2018-05-09&rft.volume=7&rft.issue=9&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201701201&rft_dat=%3Cproquest_wiley%3E2036329726%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036329726&rft_id=info:pmid/&rfr_iscdi=true