Cobalt-doped molybdenum disulfide in-situ grown on graphite paper with excellent electrocatalytic activity for triiodide evolution

Molybdenum disulfide (MoS2) is considered as a promising candidate to Pt-based catalysts. Literatures report the active centers of MoS2 locate at its edges, while the perfect in-plane domains are not active. In this study, a simple CoMoS precursor decomposition approach is used to synthesize Co-dope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-02, Vol.263, p.328-337
Hauptverfasser: Zheng, Fang, Huang, Niu, Peng, Rongcheng, Ding, Yuyue, Li, Guowang, Xia, Zhifen, Sun, Panpan, Sun, Xiaohua, Geng, Jiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum disulfide (MoS2) is considered as a promising candidate to Pt-based catalysts. Literatures report the active centers of MoS2 locate at its edges, while the perfect in-plane domains are not active. In this study, a simple CoMoS precursor decomposition approach is used to synthesize Co-doped MoS2 in-situ grown graphite paper (GP) substrate. Electrochemical analyses reveal the Co-doped MoS2 possesses excellent electrocatalytic activity comparable to Pt. Density functional theory (DFT) calculations indicate the inert in-plane S atoms neighboring the doped Co atoms become active towards triiodide reduction, as revealed by the adsorption energies (Ead) of iodine atom decreasing from 0.36 eV to −0.52 eV, identical with value obtained from Pt (−0.52 eV). Due to increased active sites, highly conductive of GP, and excellent electrical connection between Co-doped MoS2 and GP substrate, the dye-sensitized solar cell fabricated using Co-doped MoS2/GP as counter electrode (CE) shows higher photoelectric conversion efficiency (7.26%) than those based on MoS2/GP CE (6.57%) and platinized F-doped tin oxide (Pt/FTO) electrode (6.87%).
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2018.01.054