Training of CNN with Heterogeneous Learning for Multiple Pedestrian Attributes Recognition Using Rarity Rate

Pedestrian attribute information is important function for an advanced driver assistance system (ADAS). Pedestrian attributes such as body pose, face orientation and open umbrella indicate the intended action or state of the pedestrian. Generally, this information is recognized using independent cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2018/05/01, Vol.E101.D(5), pp.1222-1231
Hauptverfasser: FUKUI, Hiroshi, YAMASHITA, Takayoshi, YAMAUCHI, Yuji, FUJIYOSHI, Hironobu, MURASE, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pedestrian attribute information is important function for an advanced driver assistance system (ADAS). Pedestrian attributes such as body pose, face orientation and open umbrella indicate the intended action or state of the pedestrian. Generally, this information is recognized using independent classifiers for each task. Performing all of these separate tasks is too time-consuming at the testing stage. In addition, the processing time increases with increasing number of tasks. To address this problem, multi-task learning or heterogeneous learning is performed to train a single classifier to perform multiple tasks. In particular, heterogeneous learning is able to simultaneously train a classifier to perform regression and recognition tasks, which reduces both training and testing time. However, heterogeneous learning tends to result in a lower accuracy rate for classes with few training samples. In this paper, we propose a method to improve the performance of heterogeneous learning for such classes. We introduce a rarity rate based on the importance and class probability of each task. The appropriate rarity rate is assigned to each training sample. Thus, the samples in a mini-batch for training a deep convolutional neural network are augmented according to this rarity rate to focus on the classes with a few samples. Our heterogeneous learning approach with the rarity rate performs pedestrian attribute recognition better, especially for classes representing few training samples.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2017MVP0001