Dependence of the Reverse Current on the Surface of Electrode Placed on a Bipolar Plate in an Alkaline Water Electrolyzer
The behavior of the leak and reverse currents in a bipolar-type alkaline water electrolyzer has been investigated using a bipolar-type electrolyzer which consists of two cells. The electrodes were nickel mesh, which are the conventional electrodes for alkaline water electrolyzers. The leak circuit c...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2018/05/05, Vol.86(3), pp.138-144 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The behavior of the leak and reverse currents in a bipolar-type alkaline water electrolyzer has been investigated using a bipolar-type electrolyzer which consists of two cells. The electrodes were nickel mesh, which are the conventional electrodes for alkaline water electrolyzers. The leak circuit could be expressed by a simple equation and a simple equivalent circuit for the cell performance and ionic resistance of the manifolds. The electrolyte was replaced by a gas-free electrolyte after electrolysis to classify the influence of the reverse current into the gas reaction and electrode active material. As a result, the dominant driving force of the reverse current was the active nickel-based materials on the Ni electrode. The redox couples on the electrode surface during the reverse current were estimated based on the measured cell voltages and redox potentials on a nickel electrode. The final potentials of both sides on the bipolar plate for the replacement conditions were higher than those for the non-replacement condition, because the hydrogen of the reductant was removed from the cathode electrolyte, and the balance of the reductant and oxidant would change to the oxidation side. |
---|---|
ISSN: | 1344-3542 2186-2451 |
DOI: | 10.5796/electrochemistry.17-00102 |