Low-Power High-Speed Analog Multiplier/Divider Based on a New Current Squarer Circuit

In this paper, a CMOS ultra-low-power, high-speed four-quadrant current multiplier/divider circuit is presented. Based on square-difference approach, the proposed circuit is using a new current squarer with MOS transistors operating in weak inversion region. The translinear loops are the basic build...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2018-06, Vol.43 (6), p.2909-2918
Hauptverfasser: Maryan, Mohammad Moradinezhad, Ghanaatian, Ahmad, Azhari, Seyed Javad, Abrishamifar, Adib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a CMOS ultra-low-power, high-speed four-quadrant current multiplier/divider circuit is presented. Based on square-difference approach, the proposed circuit is using a new current squarer with MOS transistors operating in weak inversion region. The translinear loops are the basic building blocks in realization of the current-mode two-quadrant squarer and four-quadrant multiplier/divider circuits. The proposed designs have been simulated using HSPICE in 0.18  μ m TSMC CMOS (level-49 parameter) process. Post-layout simulation results with 0.8 V power supply show the total power dissipation of 770 nW, the total harmonic distortion of 0.67% (at 100 kHz), the maximum linearity error of 2%, and the − 3 dB bandwidth of 34.1 MHz. Monte Carlo analysis is also performed to ensure the stability and robustness of the circuit’s performance in the presence of the PVT (process, voltage, and temperature) variations.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-017-2968-2