Divergence spectra and Morse boundaries of relatively hyperbolic groups

We introduce a new quasi-isometry invariant, called the divergence spectrum, to study finitely generated groups. We compare the concept of divergence spectrum with the other classical notions of divergence and we examine the divergence spectra of relatively hyperbolic groups. We show the existence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2018-06, Vol.194 (1), p.99-129
1. Verfasser: Tran, Hung Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new quasi-isometry invariant, called the divergence spectrum, to study finitely generated groups. We compare the concept of divergence spectrum with the other classical notions of divergence and we examine the divergence spectra of relatively hyperbolic groups. We show the existence of an infinite collection of right-angled Coxeter groups which all have exponential divergence but they all have different divergence spectra. We also study Morse boundaries of relatively hyperbolic groups and examine their connection with Bowditch boundaries.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-017-0268-3