High Activity Hydrogen Evolution Catalysis by Uniquely Designed Amorphous/Metal Interface of Core–shell Phosphosulfide/N‐Doped CNTs
A cost effective hydrogen evolution reaction (HER) catalyst that does not use precious metallic elements is a crucial demand for environment‐benign energy production. The family of earth‐abundant transition metal compounds of nitrides, carbides, chalcogenides, and phosphides is one of the promising...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-05, Vol.8 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cost effective hydrogen evolution reaction (HER) catalyst that does not use precious metallic elements is a crucial demand for environment‐benign energy production. The family of earth‐abundant transition metal compounds of nitrides, carbides, chalcogenides, and phosphides is one of the promising candidates for such a purpose, particularly in acidic conditions. However, its catalytic performance is still needed to be enhanced through novel material designs and crystalline engineering. Herein, a chemically and electronically coupled transition metal phosphosulfide/N‐doped carbon nanotubes (NCNT) hybrid electrocatalyst is fabricated via a two‐step synthesis. The uniquely designed synthesis leads to the material morphology featuring a core–shell structure, in which the crystalline metal phosphide core is surrounded by an amorphous phosphosulfide nanoshell. Notably, due to the favorable modification of chemical composition and surface properties, core–shell CoP@PS/NCNT exhibits the noticeable HER activity of approximately −80 mV @ −10 mA cm−2 with excellent durability, which is one of the highest active nonnoble metal electrocatalysts ever reported thus far.
A chemically and electronically coupled transition metal phosphosulfide/N‐doped carbon nanotubes (NCNT) hybrid electrocatalyst is fabricated via a two‐step synthesis. The uniquely designed synthesis leads to the material morphology featuring a core–shell structure, where the crystalline metal phosphide core is surrounded by an amorphous phosphosulfide nanoshell. Notably, due to the favorable modification of the chemical composition and surface properties, core–shell CoP@PS/NCNT exhibits remarkable hydrogen evolution reaction activity. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201702806 |