Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus

The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2018-03, Vol.54 (3), p.335-351
Hauptverfasser: Litovchenko, V. A., Unguryan, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 3
container_start_page 335
container_title Differential equations
container_volume 54
creator Litovchenko, V. A.
Unguryan, G. M.
description The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties.
doi_str_mv 10.1134/S0012266118030060
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2034156523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720197595</galeid><sourcerecordid>A720197595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-cd7a15d0bb8b9cda3c91d30c6ce0f38b60db16f9e9da5c49ba8790d83a6ae8c93</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6mz2e4meyzBf1C00noOm82kTUmydTep5NubEsGDyBwG5r3fzPAIuWUwY4zP79cALAylZCwGDiDhjEyYhDjgEPNzMjnJwUm_JFfe7wFARUxMyHtim3231S3SRHdm19OVs1mFNS2soyvtdGar0tD1rqzskW76A9J171usPf0q2x19tU2DA18ekT5h0_lrclHoyuPNT5-Sj8eHTfIcLN-eXpLFMjBciDYweaSZyCHL4kyZXHOjWM7BSINQ8DiTkGdMFgpVroWZq0zHkYI85lpqjI3iU3I37j04-9mhb9O97VwznExD4HMmpAj54JqNrq2uMC2bwrZOm6FyrEtjGyzKYb6IQmAqEkoMABsB46z3Dov04Mpauz5lkJ6iTv9EPTDhyPjB22zR_b7yP_QNkN6AEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034156523</pqid></control><display><type>article</type><title>Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus</title><source>SpringerLink Journals - AutoHoldings</source><creator>Litovchenko, V. A. ; Unguryan, G. M.</creator><creatorcontrib>Litovchenko, V. A. ; Unguryan, G. M.</creatorcontrib><description>The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266118030060</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Difference and Functional Equations ; Differential equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Smoothness</subject><ispartof>Differential equations, 2018-03, Vol.54 (3), p.335-351</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Differential Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-cd7a15d0bb8b9cda3c91d30c6ce0f38b60db16f9e9da5c49ba8790d83a6ae8c93</citedby><cites>FETCH-LOGICAL-c355t-cd7a15d0bb8b9cda3c91d30c6ce0f38b60db16f9e9da5c49ba8790d83a6ae8c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266118030060$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266118030060$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Litovchenko, V. A.</creatorcontrib><creatorcontrib>Unguryan, G. M.</creatorcontrib><title>Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties.</description><subject>Cauchy problems</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Smoothness</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz6mz2e4meyzBf1C00noOm82kTUmydTep5NubEsGDyBwG5r3fzPAIuWUwY4zP79cALAylZCwGDiDhjEyYhDjgEPNzMjnJwUm_JFfe7wFARUxMyHtim3231S3SRHdm19OVs1mFNS2soyvtdGar0tD1rqzskW76A9J171usPf0q2x19tU2DA18ekT5h0_lrclHoyuPNT5-Sj8eHTfIcLN-eXpLFMjBciDYweaSZyCHL4kyZXHOjWM7BSINQ8DiTkGdMFgpVroWZq0zHkYI85lpqjI3iU3I37j04-9mhb9O97VwznExD4HMmpAj54JqNrq2uMC2bwrZOm6FyrEtjGyzKYb6IQmAqEkoMABsB46z3Dov04Mpauz5lkJ6iTv9EPTDhyPjB22zR_b7yP_QNkN6AEw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Litovchenko, V. A.</creator><creator>Unguryan, G. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus</title><author>Litovchenko, V. A. ; Unguryan, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-cd7a15d0bb8b9cda3c91d30c6ce0f38b60db16f9e9da5c49ba8790d83a6ae8c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cauchy problems</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Litovchenko, V. A.</creatorcontrib><creatorcontrib>Unguryan, G. M.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Litovchenko, V. A.</au><au>Unguryan, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>335</spage><epage>351</epage><pages>335-351</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266118030060</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2018-03, Vol.54 (3), p.335-351
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2034156523
source SpringerLink Journals - AutoHoldings
subjects Cauchy problems
Difference and Functional Equations
Differential equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Smoothness
title Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20Cauchy%20Problem%20for%20Parabolic%20Shilov%20Type%20Systems%20with%20Nonnegative%20Genus&rft.jtitle=Differential%20equations&rft.au=Litovchenko,%20V.%20A.&rft.date=2018-03-01&rft.volume=54&rft.issue=3&rft.spage=335&rft.epage=351&rft.pages=335-351&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266118030060&rft_dat=%3Cgale_proqu%3EA720197595%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034156523&rft_id=info:pmid/&rft_galeid=A720197595&rfr_iscdi=true