Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus

The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2018-03, Vol.54 (3), p.335-351
Hauptverfasser: Litovchenko, V. A., Unguryan, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266118030060