Conjugate Cauchy Problem for Parabolic Shilov Type Systems with Nonnegative Genus
The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S β is studied by constructing the fundamental solution of this problem and analyzing its basic properties....
Gespeichert in:
Veröffentlicht in: | Differential equations 2018-03, Vol.54 (3), p.335-351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of solvability of the Gelfand–Shilov conjugate Cauchy problem for parabolic Shilov type systems with variable coefficients of bounded smoothness and nonnegative genus in the spaces S
β
is studied by constructing the fundamental solution of this problem and analyzing its basic properties. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266118030060 |