Surrogate modeling and risk-based analysis for solute transport simulations

This study is driven by the question of how quickly a solute will be flushed from an aquatic system after input of the solute into the system ceases. Simulating the fate and transport of a solute in an aquatic system can be performed at high spatial and temporal resolution using a computationally de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2019-12, Vol.33 (11-12), p.1907-1921
Hauptverfasser: Arandia, Ernesto, O’Donncha, Fearghal, McKenna, Sean, Tirupathi, Seshu, Ragnoli, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study is driven by the question of how quickly a solute will be flushed from an aquatic system after input of the solute into the system ceases. Simulating the fate and transport of a solute in an aquatic system can be performed at high spatial and temporal resolution using a computationally demanding state-of-the-art hydrodynamics simulator. However, uncertainties in the system often require stochastic treatment and risk-based analysis requires a large number of simulations rendering the use of a physical model impractical. A surrogate model that represents a second-level physical abstraction of the system is developed and coupled with a Monte Carlo based method to generate volumetric inflow scenarios. The surrogate model provides an approximate 8 orders of magnitude speed-up over the full physical model enabling uncertainty quantification through Monte Carlo simulation. The approach developed here consists of an stochastic inflow generator, a solute concentration prediction mechanism based on the surrogate model, and a system response risk assessment method. The probabilistic outcome provided relates the uncertain quantities to the relevant response in terms of the system’s ability to remove the solute. We develop a general approach that can be applied in a generality of system configurations and types of solute. As a test case, we present a study specific to salinization of a lake.
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-018-1549-6