On Semicoercive Variational-Hemivariational Inequalities—Existence, Approximation, and Regularization
In this paper, we are concerned with semicoercive variational-hemivariational inequalities that encompass nonlinear semicoercive monotone variational inequalities (VIs) and pseudomonotone VIs in reflexive Banach spaces and hemivariational inequalities (HVIs) in function spaces. We present existence,...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2018-06, Vol.46 (2), p.329-342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we are concerned with semicoercive variational-hemivariational inequalities that encompass nonlinear semicoercive monotone variational inequalities (VIs) and pseudomonotone VIs in reflexive Banach spaces and hemivariational inequalities (HVIs) in function spaces. We present existence, approximation, and regularization results. Our approach to our existence result is based on recession arguments. We employ regularization techniques of nondifferentiable optimization to smooth the jumps in the hemivariational term. We treat nonconforming finite element approximation via Mosco convergence. As an example, we consider a semicoercive unilateral boundary value problem with nonmonotone boundary conditions that models a unilateral contact problem for a nonlinear elastic body under a nonmonotone friction law. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-018-0282-2 |