A one-to-many conditional generative adversarial network framework for multiple image-to-image translations

Image-to-Image translation was proposed as a general form of many image learning problems. While generative adversarial networks were successfully applied on many image-to-image translations, many models were limited to specific translation tasks and were difficult to satisfy practical needs. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2018-09, Vol.77 (17), p.22339-22366
Hauptverfasser: Chai, Chunlei, Liao, Jing, Zou, Ning, Sun, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image-to-Image translation was proposed as a general form of many image learning problems. While generative adversarial networks were successfully applied on many image-to-image translations, many models were limited to specific translation tasks and were difficult to satisfy practical needs. In this work, we introduce a One-to-Many conditional generative adversarial network, which could learn from heterogeneous sources of images. This is achieved by training multiple generators against a discriminator in synthesized learning way. This framework supports generative models to generate images in each source, so output images follow corresponding target patterns. Two implementations, hybrid fake and cascading learning, of the synthesized adversarial training scheme are also proposed, and experimented on two benchmark datasets, UTZap50K and MVOD5K, as well as a new high-quality dataset BehTex7K. We consider five challenging image-to-image translation tasks: edges-to-photo, edges-to-similar-photo translation on UTZap50K, cross-view translation on MVOD5K, and grey-to-color, grey-to-Oil-Paint on BehTex7K. We show that both implementations are able to faithfully translate from an image to another image in edges-to-photo, edges-to-similar-photo, grey-to-color, and grey-to-Oil-Paint translation tasks. The quality of output images in cross-view translation need to be further boosted.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-018-5968-7