Improved Stabilization Conditions for Nonlinear Systems with Input and State Delays via T-S Fuzzy Model

This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S) fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-14
Hauptverfasser: Xiao, Jian, Zhao, Tao, Peng, Jiayao, Che, Chang, Zhou, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S) fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs) are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/3542352