Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow

In this paper, we introduce a special class of hypersurfaces which are called λ -hypersurfaces related to a weighted volume preserving mean curvature flow in the Euclidean space. We prove that λ -hypersurfaces are critical points of the weighted area functional for the weighted volume-preserving var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2018-04, Vol.57 (2), p.1-21
Hauptverfasser: Cheng, Qing-Ming, Wei, Guoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a special class of hypersurfaces which are called λ -hypersurfaces related to a weighted volume preserving mean curvature flow in the Euclidean space. We prove that λ -hypersurfaces are critical points of the weighted area functional for the weighted volume-preserving variations. Furthermore, we classify complete λ -hypersurfaces with polynomial area growth and H - λ ≥ 0 . The classification result generalizes the results of Huisken (J Differ Geom 31:285–299, 1990 ) and Colding and Minicozzi (Ann Math 175:755–833, 2012 ).
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-018-1303-4