A Response Surface Model Approach to Parameter Estimation of Reinforcement Learning for the Travelling Salesman Problem
This paper reports the use of response surface model (RSM) and reinforcement learning (RL) to solve the travelling salesman problem (TSP). In contrast to heuristically approaches to estimate the parameters of RL, the method proposed here allows a systematic estimation of the learning rate and the di...
Gespeichert in:
Veröffentlicht in: | Journal of control, automation & electrical systems automation & electrical systems, 2018-06, Vol.29 (3), p.350-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports the use of response surface model (RSM) and reinforcement learning (RL) to solve the travelling salesman problem (TSP). In contrast to heuristically approaches to estimate the parameters of RL, the method proposed here allows a systematic estimation of the learning rate and the discount factor parameters.The Q-learning and SARSA algorithms were applied to standard problems from the TSPLIB library. Computational results demonstrate that the use of RSM is capable of producing better solutions to both symmetric and asymmetric tests of TSP. |
---|---|
ISSN: | 2195-3880 2195-3899 |
DOI: | 10.1007/s40313-018-0374-y |