A Response Surface Model Approach to Parameter Estimation of Reinforcement Learning for the Travelling Salesman Problem

This paper reports the use of response surface model (RSM) and reinforcement learning (RL) to solve the travelling salesman problem (TSP). In contrast to heuristically approaches to estimate the parameters of RL, the method proposed here allows a systematic estimation of the learning rate and the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2018-06, Vol.29 (3), p.350-359
Hauptverfasser: Ottoni, André L. C., Nepomuceno, Erivelton G., de Oliveira, Marcos S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the use of response surface model (RSM) and reinforcement learning (RL) to solve the travelling salesman problem (TSP). In contrast to heuristically approaches to estimate the parameters of RL, the method proposed here allows a systematic estimation of the learning rate and the discount factor parameters.The Q-learning and SARSA algorithms were applied to standard problems from the TSPLIB library. Computational results demonstrate that the use of RSM is capable of producing better solutions to both symmetric and asymmetric tests of TSP.
ISSN:2195-3880
2195-3899
DOI:10.1007/s40313-018-0374-y