The Folded (2D + 1)-cube and Its Uniform Posets
Let Γ denote the folded (2 D + 1)-cube with vertex set X and diameter D ≥ 3. Fix x ∈ X . We first define a partial order ≤ on X as follows. For y , z ∈ X let y ≤ z whenever ∂ ( x , y ) + ∂ ( y , z ) = ∂ ( x , z ). Let R (resp. L ) denote the raising matrix (resp. lowering matrix) of Γ. Next we show...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2018-03, Vol.34 (2), p.281-292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Γ denote the folded (2
D
+ 1)-cube with vertex set
X
and diameter
D
≥ 3. Fix
x
∈
X
. We first define a partial order ≤ on
X
as follows. For
y
,
z
∈
X
let
y
≤
z
whenever
∂
(
x
,
y
) +
∂
(
y
,
z
) =
∂
(
x
,
z
). Let
R
(resp.
L
) denote the raising matrix (resp. lowering matrix) of Γ. Next we show that there exists a certain linear dependency among
RL
2
,
LRL
,
L
2
R
and
L
for each given
Q
-polynomial structure of Γ. Finally, we determine whether the above linear dependency structure gives this poset a uniform structure or strongly uniform structure. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-018-0745-y |