A Novel Method for the Extrinsic Calibration of a 2D Laser Rangefinder and a Camera

We present a novel method for extrinsically calibrating a camera and a 2D laser rangefinder whose beams are invisible from the camera image. We show that the point-to-plane constraints from a single observation of a V-shaped calibration pattern composed of two non-coplanar triangles suffice to uniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2018-05, Vol.18 (10), p.4200-4211
Hauptverfasser: Wenbo Dong, Isler, Volkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel method for extrinsically calibrating a camera and a 2D laser rangefinder whose beams are invisible from the camera image. We show that the point-to-plane constraints from a single observation of a V-shaped calibration pattern composed of two non-coplanar triangles suffice to uniquely constrain the relative pose between two sensors. Next, we present an approach to obtain analytical solutions using point-to-plane constraints from single or multiple observations. Along the way, we also show that the previous solutions, in contrast to our method, have inherent ambiguities and therefore must rely on a good initial estimate. Real and synthetic experiments validate our method and show that it achieves better accuracy than the previous methods.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2018.2819082