Secondary Circulation Asymmetry in a Meandering, Partially Stratified Estuary

Numerical model experiments are used to study the effects of multiple channel bends on estuarine dynamics and, in particular, on secondary flows. These effects are demonstrated by comparing experiments with two different idealized trumpet‐shaped estuaries, one straight and another one with a ∼8 km m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2018-03, Vol.123 (3), p.1670-1683
Hauptverfasser: Pein, J., Valle‐Levinson, A., Stanev, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical model experiments are used to study the effects of multiple channel bends on estuarine dynamics and, in particular, on secondary flows. These effects are demonstrated by comparing experiments with two different idealized trumpet‐shaped estuaries, one straight and another one with a ∼8 km meandering section in the middle of the estuary. Meanders complicate the flow field by introducing secondary processes. For instance, meanders increase turbulence and associated mixing locally within the water column, as well as outside the meandering portion. Furthermore, meanders transform up to 30% of the along‐channel momentum into secondary circulation. Production of turbulence and secondary currents is different at flood and ebb tidal phases. At flood, meanders lead to unstable stratification and increased turbulence. At ebb, the flow develops a helical pattern and adjusts to the channel curvature with minimal decrease in density stability. The secondary circulation asymmetry is caused by an interplay between the across‐channel baroclinic pressure gradient force and the centrifugal force. During ebb both forces enhance each other, whereas they oppose during flood. As a consequence of this interaction between baroclinic forcing and curving morphology, ebb flows and horizontal buoyancy fluxes increase relative to flood. The enhanced ebb dominance shifts a density front toward the mouth of the estuary, thus reducing salt intrusion. Key Points Channel meanders transform along‐channel flows into asymmetric secondary circulation and into turbulence At flood tidal phases, channel meanders enhance vertical mixing; at ebb phases, channel meanders enhance lateral currents Channel meanders tend to reduce the flood‐directed transport of momentum and the extent of salinity intrusion
ISSN:2169-9275
2169-9291
DOI:10.1002/2016JC012623