Chemical manipulation of phase stability and electronic behavior in Cu4−xAgxSe2
Superionic chalcogenides have gained renewed research interest, within the last decade, as emerging thermoelectric materials due to attractive properties, such as glass-like phonon transport coupled with crystal-like carrier transport. Of particular interest has been p-type coinage metal-based mater...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (16), p.6997-7004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superionic chalcogenides have gained renewed research interest, within the last decade, as emerging thermoelectric materials due to attractive properties, such as glass-like phonon transport coupled with crystal-like carrier transport. Of particular interest has been p-type coinage metal-based materials (Cu2Se, CuAgSe), which have demonstrated figures-of-merit, ZT, exceeding unity through a broad temperature range. However, the lack of n-type counterparts within this class of compounds limits potential module deployment. Here we show that careful stoichiometry control of the Cu4−xAgxSe2 series enables the formation of stable n-type materials throughout the measured temperature range upon substitution of Cu by Ag (1 ≤ x ≤ 3). Thermopower data show that the sample with x = 1 (Cu3AgSe2) undergoes a transition from n- to p-type conducting behavior, whereas samples with x = 2 (CuAgSe) and x = 3 (CuAg3Se2) exhibit n-type character in the whole measured temperature range. The post superionic transition n-type conductivity of CuAgSe is quite surprising and is contrary to the n- to p-type transition previously reported for this composition. Room temperature X-ray diffraction studies indicate the formation of a two-phase mixture for samples with x = 1 (Cu3AgSe2 = α-Cu2Se + α-CuAgSe) and x = 3 (CuAg3Se2 = α-Ag2Se + α-CuAgSe), whereas a single-phase α-CuAgSe is observed for the sample with x = 2. At 523 K, X-ray diffraction patterns show that Cu3AgSe2 (x = 1) and α-CuAgSe (x = 2) transform into single phase structures with the space group Fm3m, while the CuAg3Se2 (x = 3) sample remains a two-phase system (CuAg3Se2 = β-Ag2Se + β-CuAgSe) in contrast to previous studies. This structural study is consistent with the observed gradual evolution of the conduction type of Cu4−xAgxSe2 samples between the p-type character of Cu2Se (x = 0) and the n-type semiconducting behavior of Ag2Se (x = 4). This suggests that the conducting behavior in the Cu4−xAgxSe2 is modulated by the Cu : Ag ratio. All Cu4−xAgxSe2 samples exhibit extremely low thermal conductivity after their phase transitions ( |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c8ta01531g |