Calculation of Geometric Probabilities Using Covariogram of Convex Bodies

In the paper, a formula to calculate the probability that a random segment L(ω, u) in R n with a fixed direction u and length l lies entirely in the bounded convex body D ⊂ R n ( n ≥ 2) is obtained in terms of covariogram of the body D . For any dimension n ≥ 2, a relationship between the probabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2018-03, Vol.53 (2), p.113-120
Hauptverfasser: Aharonyan, N. G., Ohanyan, V. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, a formula to calculate the probability that a random segment L(ω, u) in R n with a fixed direction u and length l lies entirely in the bounded convex body D ⊂ R n ( n ≥ 2) is obtained in terms of covariogram of the body D . For any dimension n ≥ 2, a relationship between the probability P ( L ( ω , u ) ⊂ D ) and the orientation-dependent chord length distribution is also obtained. Using this formula, we obtain the explicit form of the probability P ( L ( ω , u ) ⊂ D ) in the cases where D is an n-dimensional ball ( n ≥ 2), or a regular triangle on the plane.
ISSN:1068-3623
1934-9416
DOI:10.3103/S1068362318020061