Calculation of Geometric Probabilities Using Covariogram of Convex Bodies
In the paper, a formula to calculate the probability that a random segment L(ω, u) in R n with a fixed direction u and length l lies entirely in the bounded convex body D ⊂ R n ( n ≥ 2) is obtained in terms of covariogram of the body D . For any dimension n ≥ 2, a relationship between the probabilit...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2018-03, Vol.53 (2), p.113-120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, a formula to calculate the probability that a random segment L(ω, u) in
R
n
with a fixed direction u and length l lies entirely in the bounded convex body
D
⊂
R
n
(
n
≥ 2) is obtained in terms of covariogram of the body
D
. For any dimension
n
≥ 2, a relationship between the probability
P
(
L
(
ω
,
u
) ⊂
D
) and the orientation-dependent chord length distribution is also obtained. Using this formula, we obtain the explicit form of the probability
P
(
L
(
ω
,
u
) ⊂
D
) in the cases where
D
is an n-dimensional ball (
n
≥ 2), or a regular triangle on the plane. |
---|---|
ISSN: | 1068-3623 1934-9416 |
DOI: | 10.3103/S1068362318020061 |