Estimating hominid life history: the critical interbirth interval

Unlike any great apes, humans have expanded into a wide variety of habitats during the course of evolution, beginning with the transition by australopithecines from forest to savanna habitation. Novel environments are likely to have imposed hominids a demographic challenge due to such factors as hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Population ecology 2018-04, Vol.60 (1-2), p.127-142
Hauptverfasser: Nakahashi, Wataru, Horiuchi, Shiro, Ihara, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike any great apes, humans have expanded into a wide variety of habitats during the course of evolution, beginning with the transition by australopithecines from forest to savanna habitation. Novel environments are likely to have imposed hominids a demographic challenge due to such factors as higher predation risk and scarcer food resources. In fact, recent studies have found a paucity of older relative to younger adults in hominid fossil remains, indicating considerably high adult mortality in australopithecines, early Homo , and Neanderthals. It is not clear to date why only human ancestors among all hominoid species could survive in these harsh environments. In this paper, we explore the possibility that hominids had shorter interbirth intervals to enhance fertility than the extant apes. To infer interbirth intervals in fossil hominids, we introduce the notion of the critical interbirth interval, or the threshold length of birth spacing above which a population is expected to go to extinction. We develop a new method to obtain the critical interbirth intervals of hominids based on the observed ratios of older adults to all adults in fossil samples. Our analysis suggests that the critical interbirth intervals of australopithecines, early Homo , and Neanderthals are significantly shorter than the observed interbirth intervals of extant great apes. We also discuss possible factors that may have caused the evolutionary divergence of hominid life history traits from those of great apes.
ISSN:1438-3896
1438-390X
DOI:10.1007/s10144-018-0610-0