Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems

This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-05, Vol.29 (5), p.2031-2036
Hauptverfasser: Wu, Yuhu, Shen, Tielong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2036
container_issue 5
container_start_page 2031
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Wu, Yuhu
Shen, Tielong
description This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control problem is presented in an algebraic form. Then, employing the method of semitensor product of matrices and the increasing-dimension technique, a succinct algebraic form of the policy iteration algorithm is derived to solve the optimal control problem. To show the effectiveness of the proposed policy iteration algorithm, an optimization problem of p53-Mdm2 gene network is investigated.
doi_str_mv 10.1109/TNNLS.2017.2661863
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2029142623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7872419</ieee_id><sourcerecordid>1877526038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c9f348dab5f5aadeb15a1dbdb8d89a4a0b62fd19992c2b7742ef0900aa4f67213</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKrV_QEEWvHhpTWZ383GU-gmlFVrFW8hmE13Z3dQkPey_d2trD85lBt5nhuFB6JzgMSFY3Cxns-liDJiwMVBKOE0P0CkQCiNIOT_cz-z9BA1D-MJ9UZzTTByjE-DAmeD5KXp7cXWlu-Q5Gq9i5drktv5wvoqfTWKdT-arWDWqTiaujd7VibPJIjr9qUKsdDJ1H5Xu07uuVc3vtOhCNE04Q0dW1cEMd32AXh_ul5On0XT--Dy5nY50mpM40sKmGS9VkdtcqdIUJFekLMqCl1yoTOGCgi2JEAI0FIxlYCwWGCuVWcqApAN0vb278u57bUKUTRW0qWvVGrcOknDGcqA45T169Q_9cmvf9t9JwCBIBhTSnoItpb0LwRsrV74X4DtJsNyIl7_i5Ua83Invly53p9dFY8r9yp_mHrjYApUxZh8zziAjIv0B_AOHiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029142623</pqid></control><display><type>article</type><title>Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Yuhu ; Shen, Tielong</creator><creatorcontrib>Wu, Yuhu ; Shen, Tielong</creatorcontrib><description>This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control problem is presented in an algebraic form. Then, employing the method of semitensor product of matrices and the increasing-dimension technique, a succinct algebraic form of the policy iteration algorithm is derived to solve the optimal control problem. To show the effectiveness of the proposed policy iteration algorithm, an optimization problem of p53-Mdm2 gene network is investigated.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2017.2661863</identifier><identifier>PMID: 28287985</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace electronics ; Algebra ; Algorithms ; Boolean control networks ; Cost function ; Dynamical systems ; Heuristic algorithms ; infinite horizon optimal control ; Inventory management ; Iterative algorithms ; Learning systems ; Markov analysis ; Markov processes ; MDM2 protein ; Optimal control ; Optimization ; p53 Protein ; policy iteration ; semitensor product (STP) ; Stochasticity</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-05, Vol.29 (5), p.2031-2036</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c9f348dab5f5aadeb15a1dbdb8d89a4a0b62fd19992c2b7742ef0900aa4f67213</citedby><cites>FETCH-LOGICAL-c351t-c9f348dab5f5aadeb15a1dbdb8d89a4a0b62fd19992c2b7742ef0900aa4f67213</cites><orcidid>0000-0001-9317-1404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7872419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7872419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28287985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Shen, Tielong</creatorcontrib><title>Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control problem is presented in an algebraic form. Then, employing the method of semitensor product of matrices and the increasing-dimension technique, a succinct algebraic form of the policy iteration algorithm is derived to solve the optimal control problem. To show the effectiveness of the proposed policy iteration algorithm, an optimization problem of p53-Mdm2 gene network is investigated.</description><subject>Aerospace electronics</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Boolean control networks</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>Heuristic algorithms</subject><subject>infinite horizon optimal control</subject><subject>Inventory management</subject><subject>Iterative algorithms</subject><subject>Learning systems</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>MDM2 protein</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>p53 Protein</subject><subject>policy iteration</subject><subject>semitensor product (STP)</subject><subject>Stochasticity</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKrV_QEEWvHhpTWZ383GU-gmlFVrFW8hmE13Z3dQkPey_d2trD85lBt5nhuFB6JzgMSFY3Cxns-liDJiwMVBKOE0P0CkQCiNIOT_cz-z9BA1D-MJ9UZzTTByjE-DAmeD5KXp7cXWlu-Q5Gq9i5drktv5wvoqfTWKdT-arWDWqTiaujd7VibPJIjr9qUKsdDJ1H5Xu07uuVc3vtOhCNE04Q0dW1cEMd32AXh_ul5On0XT--Dy5nY50mpM40sKmGS9VkdtcqdIUJFekLMqCl1yoTOGCgi2JEAI0FIxlYCwWGCuVWcqApAN0vb278u57bUKUTRW0qWvVGrcOknDGcqA45T169Q_9cmvf9t9JwCBIBhTSnoItpb0LwRsrV74X4DtJsNyIl7_i5Ua83Invly53p9dFY8r9yp_mHrjYApUxZh8zziAjIv0B_AOHiw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wu, Yuhu</creator><creator>Shen, Tielong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9317-1404</orcidid></search><sort><creationdate>20180501</creationdate><title>Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems</title><author>Wu, Yuhu ; Shen, Tielong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c9f348dab5f5aadeb15a1dbdb8d89a4a0b62fd19992c2b7742ef0900aa4f67213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace electronics</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Boolean control networks</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>Heuristic algorithms</topic><topic>infinite horizon optimal control</topic><topic>Inventory management</topic><topic>Iterative algorithms</topic><topic>Learning systems</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>MDM2 protein</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>p53 Protein</topic><topic>policy iteration</topic><topic>semitensor product (STP)</topic><topic>Stochasticity</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Shen, Tielong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Yuhu</au><au>Shen, Tielong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>29</volume><issue>5</issue><spage>2031</spage><epage>2036</epage><pages>2031-2036</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control problem is presented in an algebraic form. Then, employing the method of semitensor product of matrices and the increasing-dimension technique, a succinct algebraic form of the policy iteration algorithm is derived to solve the optimal control problem. To show the effectiveness of the proposed policy iteration algorithm, an optimization problem of p53-Mdm2 gene network is investigated.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28287985</pmid><doi>10.1109/TNNLS.2017.2661863</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9317-1404</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-05, Vol.29 (5), p.2031-2036
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2029142623
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Algebra
Algorithms
Boolean control networks
Cost function
Dynamical systems
Heuristic algorithms
infinite horizon optimal control
Inventory management
Iterative algorithms
Learning systems
Markov analysis
Markov processes
MDM2 protein
Optimal control
Optimization
p53 Protein
policy iteration
semitensor product (STP)
Stochasticity
title Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Policy%20Iteration%20Algorithm%20for%20Optimal%20Control%20of%20Stochastic%20Logical%20Dynamical%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wu,%20Yuhu&rft.date=2018-05-01&rft.volume=29&rft.issue=5&rft.spage=2031&rft.epage=2036&rft.pages=2031-2036&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2017.2661863&rft_dat=%3Cproquest_RIE%3E1877526038%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029142623&rft_id=info:pmid/28287985&rft_ieee_id=7872419&rfr_iscdi=true