Policy Iteration Algorithm for Optimal Control of Stochastic Logical Dynamical Systems

This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-05, Vol.29 (5), p.2031-2036
Hauptverfasser: Wu, Yuhu, Shen, Tielong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief investigates the infinite horizon optimal control problem for stochastic multivalued logical dynamical systems with discounted cost. Applying the equivalent descriptions of stochastic logical dynamics in term of Markov decision process, the discounted infinite horizon optimal control problem is presented in an algebraic form. Then, employing the method of semitensor product of matrices and the increasing-dimension technique, a succinct algebraic form of the policy iteration algorithm is derived to solve the optimal control problem. To show the effectiveness of the proposed policy iteration algorithm, an optimization problem of p53-Mdm2 gene network is investigated.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2017.2661863