Integer part polynomial correlation sequences
Following an approach presented by Frantzikinakis [Multiple correlation sequences and nilsequences. Invent. Math. 202(2) (2015), 875–892], we prove that any multiple correlation sequence defined by invertible measure preserving actions of commuting transformations with integer part polynomial iterat...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2018-06, Vol.38 (4), p.1525-1542 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following an approach presented by Frantzikinakis [Multiple correlation sequences and nilsequences. Invent. Math. 202(2) (2015), 875–892], we prove that any multiple correlation sequence defined by invertible measure preserving actions of commuting transformations with integer part polynomial iterates is the sum of a nilsequence and an error term, which is small in uniform density. As an intermediate result, we show that multiple ergodic averages with iterates given by the integer part of real-valued polynomials converge in the mean. Also, we show that under certain assumptions the limit is zero. A transference principle, communicated to us by M. Wierdl, plays an important role in our arguments by allowing us to deduce results for
$\mathbb{Z}$
-actions from results for flows. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2016.67 |