A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition

In this paper, an asymmetric cryptosystem has been proposed to enhance the security of DRPE. The traditional DRPE scheme is thus tweaked by using fractional Fourier transform (FrFT), a class of structured phase masks called as deterministic phase masks (DMKs) and deploying singular value decompositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2018-05, Vol.50 (5), p.1-24, Article 210
Hauptverfasser: Girija, R., Singh, Hukum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an asymmetric cryptosystem has been proposed to enhance the security of DRPE. The traditional DRPE scheme is thus tweaked by using fractional Fourier transform (FrFT), a class of structured phase masks called as deterministic phase masks (DMKs) and deploying singular value decomposition (SVD). In specific, we propose to organise the encryption procedure by using two DMKs and FrFT, additionally deploying SVD. On the decryption front, the input image is recovered by utilising the inverse singular value decomposition (ISVD) and an angular portion of the deterministic phase masks. The use of FrFT for encryption and decryption would enhance the robustness of DRPE scheme. Deployment of SVD on our asymmetric cryptosystem provides three components for cipher image is yet another added feature that hardens the security of DRPE scheme. DMKs are formed by the deviation from conventional rectangular function and limited range values which delivers key components with reduced size, better performance and lower complexity. The capability study of defined method, includes analysis on SVD, histogram and correlation coefficient. Our system is subject to an occlusion attack and noise attack to evaluate its performance and reliability. Computational analysis outputs and security investigation are offered in aspect to determine the security potential of proposed system. Comparative results are shown for values of mean-square-error and peak-signal-to-noise ratio of DRPE schemes.
ISSN:0306-8919
1572-817X
DOI:10.1007/s11082-018-1472-6