On Singular Points of Meromorphic Functions Determined by Continued Fractions

It is shown that Leighton’s conjecture about singular points of meromorphic functions represented by C-fractions K ∞ n =1 ( a n z αn /1) with exponents α 1 , α 2 ,... tending to infinity, which was proved by Gonchar for a nondecreasing sequence of exponents, holds also for meromorphic functions repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2018-03, Vol.103 (3-4), p.527-536
1. Verfasser: Buslaev, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that Leighton’s conjecture about singular points of meromorphic functions represented by C-fractions K ∞ n =1 ( a n z αn /1) with exponents α 1 , α 2 ,... tending to infinity, which was proved by Gonchar for a nondecreasing sequence of exponents, holds also for meromorphic functions represented by continued fractions K ∞ n =1 ( a n A n ( z )/1), where A 1 , A 2 ,... is a sequence of polynomials with limit distribution of zeros whose degrees tend to infinity.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434618030203