Utilizing 2D Electrical Resistivity Tomography and Very Low Frequency Electromagnetics to Investigate the Hydrogeology of Natural Cold Springs Near Virginia City, Southwest Montana

Virginia City, Montana, is located in the northern Rocky Mountains of the United States. Two natural springs supply the city’s water; however, the source of that water is poorly understood. The springs are located on the east side of the city, on the edge of an area affected by landslides. 2D electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2018-10, Vol.175 (10), p.3525-3538
Hauptverfasser: Khalil, Mohamed A., Bobst, Andrew, Mosolf, Jesse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Virginia City, Montana, is located in the northern Rocky Mountains of the United States. Two natural springs supply the city’s water; however, the source of that water is poorly understood. The springs are located on the east side of the city, on the edge of an area affected by landslides. 2D electric resistivity tomography (ERT) and very low frequency electromagnetics (VLF-EM) were used to explore the springs and landslides. Two intersecting 2D resistivity profiles were measured at each spring, and two VLF profiles were measured in a landslide zone. The inverted 2D resistivity profiles at the springs reveal high resistivity basalt flows juxtaposed with low resistivity volcanic ash. The VLF profiles within the landslide show a series of fracture zones in the basalt, which are interpreted to be a series of landslide scarps. Results show a strong correlation between the inferred scarps and local topography. This study provides valuable geological information to help understand the source of water to the springs. The contact between the fractured basalt and the ash provides a sharp contrast in permeability, which causes water to flow along the contact and discharge at outcrop. The fracture zones along the scarps in the landslide deposits provide conduits of high secondary permeability to transmit water to the springs. The fracture zones near the scarps may also provide targets for municipal supply wells.
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-018-1865-2