On the relation between K- and L-theory of C∗-algebras

We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2018-06, Vol.371 (1-2), p.517-563
Hauptverfasser: Land, Markus, Nikolaus, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 1-2
container_start_page 517
container_title Mathematische annalen
container_volume 371
creator Land, Markus
Nikolaus, Thomas
description We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obtain a natural equivalence K A 1 2 → ≃ L A 1 2 of periodic K - and L -theory spectra after inverting 2. We show that this equivalence extends to K - and L -theory of real C ∗ -algebras. Using this we give a comparison between the real Baum–Connes conjecture and the L -theoretic Farrell–Jones conjecture. We conclude that these conjectures are equivalent after inverting 2 if and only if a certain completion conjecture in L -theory is true.
doi_str_mv 10.1007/s00208-017-1617-0
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2027693190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027693190</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-db2c50d0871801d551b7bcccff218a75da2247703ecef99278f2e6698d0554f43</originalsourceid><addsrcrecordid>eNpFkM9KxDAQh4MoWFcfwFvAc3QyaZr0KMV_WNiLnkPaJusupa1JF_ENfAPfzycxSwUvM4ffx2-Gj5BLDtccQN1EAATNgCvGizTgiGQ8F8i4BnVMshRLJrXgp-Qsxh0ACACZEb0e6PzmaHC9nbfjQBs3fzg30GdG7dDRmqV0DJ909LT6-fpmtt-4Jth4Tk687aO7-Nsr8np_91I9snr98FTd1mxCLGbWNdhK6ECr9AjvpOSNatq29R65tkp2FjFXCoRrnS9LVNqjK4pSdyBl7nOxIldL7xTG972Ls9mN-zCkkwYBVVEKXkKicKHiFLbDxoV_ioM5GDKLIZMMmYMhA-IXdJlXPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027693190</pqid></control><display><type>article</type><title>On the relation between K- and L-theory of C∗-algebras</title><source>SpringerLink Journals</source><creator>Land, Markus ; Nikolaus, Thomas</creator><creatorcontrib>Land, Markus ; Nikolaus, Thomas</creatorcontrib><description>We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obtain a natural equivalence K A 1 2 → ≃ L A 1 2 of periodic K - and L -theory spectra after inverting 2. We show that this equivalence extends to K - and L -theory of real C ∗ -algebras. Using this we give a comparison between the real Baum–Connes conjecture and the L -theoretic Farrell–Jones conjecture. We conclude that these conjectures are equivalent after inverting 2 if and only if a certain completion conjecture in L -theory is true.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-017-1617-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Equivalence ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische annalen, 2018-06, Vol.371 (1-2), p.517-563</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p226t-db2c50d0871801d551b7bcccff218a75da2247703ecef99278f2e6698d0554f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-017-1617-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-017-1617-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Land, Markus</creatorcontrib><creatorcontrib>Nikolaus, Thomas</creatorcontrib><title>On the relation between K- and L-theory of C∗-algebras</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obtain a natural equivalence K A 1 2 → ≃ L A 1 2 of periodic K - and L -theory spectra after inverting 2. We show that this equivalence extends to K - and L -theory of real C ∗ -algebras. Using this we give a comparison between the real Baum–Connes conjecture and the L -theoretic Farrell–Jones conjecture. We conclude that these conjectures are equivalent after inverting 2 if and only if a certain completion conjecture in L -theory is true.</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM9KxDAQh4MoWFcfwFvAc3QyaZr0KMV_WNiLnkPaJusupa1JF_ENfAPfzycxSwUvM4ffx2-Gj5BLDtccQN1EAATNgCvGizTgiGQ8F8i4BnVMshRLJrXgp-Qsxh0ACACZEb0e6PzmaHC9nbfjQBs3fzg30GdG7dDRmqV0DJ909LT6-fpmtt-4Jth4Tk687aO7-Nsr8np_91I9snr98FTd1mxCLGbWNdhK6ECr9AjvpOSNatq29R65tkp2FjFXCoRrnS9LVNqjK4pSdyBl7nOxIldL7xTG972Ls9mN-zCkkwYBVVEKXkKicKHiFLbDxoV_ioM5GDKLIZMMmYMhA-IXdJlXPQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Land, Markus</creator><creator>Nikolaus, Thomas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20180601</creationdate><title>On the relation between K- and L-theory of C∗-algebras</title><author>Land, Markus ; Nikolaus, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-db2c50d0871801d551b7bcccff218a75da2247703ecef99278f2e6698d0554f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Land, Markus</creatorcontrib><creatorcontrib>Nikolaus, Thomas</creatorcontrib><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Land, Markus</au><au>Nikolaus, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the relation between K- and L-theory of C∗-algebras</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>371</volume><issue>1-2</issue><spage>517</spage><epage>563</epage><pages>517-563</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obtain a natural equivalence K A 1 2 → ≃ L A 1 2 of periodic K - and L -theory spectra after inverting 2. We show that this equivalence extends to K - and L -theory of real C ∗ -algebras. Using this we give a comparison between the real Baum–Connes conjecture and the L -theoretic Farrell–Jones conjecture. We conclude that these conjectures are equivalent after inverting 2 if and only if a certain completion conjecture in L -theory is true.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-017-1617-0</doi><tpages>47</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2018-06, Vol.371 (1-2), p.517-563
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2027693190
source SpringerLink Journals
subjects Algebra
Equivalence
Mathematics
Mathematics and Statistics
title On the relation between K- and L-theory of C∗-algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20relation%20between%20K-%20and%20L-theory%20of%20C%E2%88%97-algebras&rft.jtitle=Mathematische%20annalen&rft.au=Land,%20Markus&rft.date=2018-06-01&rft.volume=371&rft.issue=1-2&rft.spage=517&rft.epage=563&rft.pages=517-563&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-017-1617-0&rft_dat=%3Cproquest_sprin%3E2027693190%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027693190&rft_id=info:pmid/&rfr_iscdi=true