On the relation between K- and L-theory of C∗-algebras

We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2018-06, Vol.371 (1-2), p.517-563
Hauptverfasser: Land, Markus, Nikolaus, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of a map of spectra τ A : k A → ℓ A between connective topological K -theory and connective algebraic L -theory of a complex C ∗ -algebra A which is natural in A and compatible with multiplicative structures. We determine its effect on homotopy groups and as a consequence obtain a natural equivalence K A 1 2 → ≃ L A 1 2 of periodic K - and L -theory spectra after inverting 2. We show that this equivalence extends to K - and L -theory of real C ∗ -algebras. Using this we give a comparison between the real Baum–Connes conjecture and the L -theoretic Farrell–Jones conjecture. We conclude that these conjectures are equivalent after inverting 2 if and only if a certain completion conjecture in L -theory is true.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-017-1617-0