Recent insights into the dissolved and particulate fluxes from the Himalayan tributaries to the Ganga River

The Ganga River plays a major role in the transfer of materials from the Indian sub-continent to the Bay of Bengal, both in dissolved and particulate forms. To understand the present elemental dynamics of the Ganga River system, it is important to assess the hydrogeochemical contribution of its trib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2018-04, Vol.77 (8), p.1-14, Article 313
Hauptverfasser: Azam, Md Maroof, Kumari, Monika, Maharana, Chinmaya, Singh, Abhay K., Tripathi, Jayant K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ganga River plays a major role in the transfer of materials from the Indian sub-continent to the Bay of Bengal, both in dissolved and particulate forms. To understand the present elemental dynamics of the Ganga River system, it is important to assess the hydrogeochemical contribution of its tributaries. In this paper, we present an updated database on dissolved and particulate fluxes and denudation rates of the Himalayan tributaries of the Ganga River (Ramganga, Ghaghara, Gandak and Kosi). Dissolved trace element concentrations, their fluxes and suspended sediment-associated elemental fluxes of the Himalayan tributaries have been reported for the first time. Total dissolved flux of the Ramganga, Ghaghara, Gandak and Kosi was estimated as 4, 19.1, 10.3 and 8.8 million tons year −1 accounting for ~ 5.7, ~ 27.3, ~ 14.7 and ~ 12.6%, respectively, of the total annual dissolved load carried by the Ganga River. The total particulate flux of the Ramganga, Ghaghara, Gandak and Kosi was computed as 8.2, 81.6, 30.9 and 19.5 million tons year −1 , respectively. Compared to earlier studies, we have found a significant increase in the total dissolved flux and chemical denudation rate of the studied tributaries. The estimated particulate fluxes were found to be low in comparison to the previous studies. We suggest that a significant increase in the dissolved fluxes and a decrease in the particulate fluxes are an indication of the increasing anthropogenic disturbances in the catchment of these tributaries.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-018-7490-7