A semantics-based dispatching rule selection approach for job shop scheduling
Dispatching rules are commonly used for job shop scheduling in industries because they are easy to implement, and they yield reasonable solutions within a very short computational time. Many dispatching rules have been developed but they can only perform well in specific scenarios. This is because a...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2019-10, Vol.30 (7), p.2759-2779 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dispatching rules are commonly used for job shop scheduling in industries because they are easy to implement, and they yield reasonable solutions within a very short computational time. Many dispatching rules have been developed but they can only perform well in specific scenarios. This is because a dispatching rule or a combination of dispatching rules always pursues a single or multiple fixed production objectives. A lot of approaches (e.g. simulation based or machine learning based approaches) have been published in the literatures attempted to solve the problem of selecting the proper dispatching rules for a given production objective. To select a combination of dispatching rules per randomly selected combination of objectives, this paper investigates a novel semantics-based dispatching rule selection system. Each of the dispatching rules and production objectives relates to a set of scheduling parameters like processing time, remaining work, total work, due date, release date, tardiness, etc. These parameters are semantically interrelated so that a dispatching rule and a production objective can also be semantically related through their semantic expressions. A semantic similarity value can be calculated by comparing their semantic expressions. Based on this idea, a semantics-based dispatching rule selection system for job shop scheduling is developed to generate a combination of dispatching rules given randomly selected combination of production objectives. A proof-of-concept verification process is provided at the end of the paper. |
---|---|
ISSN: | 0956-5515 1572-8145 |
DOI: | 10.1007/s10845-018-1421-z |