Development of a NO x emission model with seven optimized input parameters for a coal-fired boiler

Optimizing the operation of coal-fired power plants to reduce nitrogen oxide (NOx) emissions requires accurate modeling of the NOx emission process. The careful selection of input parameters not only forms the basis of accurate modeling, but can also be used to reduce the complexity of the model. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2018-04, Vol.19 (4), p.315-328
Hauptverfasser: Wang, Yue-lan, Ma, Zeng-yi, You, Hai-hui, Tang, Yi-jun, Shen, Yue-liang, Ni, Ming-jiang, Chi, Yong, Yan, Jian-hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimizing the operation of coal-fired power plants to reduce nitrogen oxide (NOx) emissions requires accurate modeling of the NOx emission process. The careful selection of input parameters not only forms the basis of accurate modeling, but can also be used to reduce the complexity of the model. The present study employs the least squares support vector machine-supervised learning method to model NOx emissions based on historical real time data obtained from a 1000-MW once-through boiler. The initial input parameters are determined by expert knowledge and operational experience, while the final input parameters are obtained by sensitivity analysis, where the variation in model accuracy for a given set of data is analyzed as one or several input parameters are successively omitted from the calculations, while retaining all other parameters. Here, model accuracy is evaluated according to the mean relative error (MRE). This process reduces the parameters required for NOx emission modeling from an initial number of 33 to 7, while the corresponding MRE is reduced from 3.09% to 2.23%. Moreover, a correlation of 0.9566 between predicted and measured values was obtained by applying the model with just these seven input parameters to a validation dataset. As such, the proposed method for selecting input parameters serves as a reference for related studies.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A1600787