A FRACTIONAL KINETIC PROCESS DESCRIBING THE INTERMEDIATE TIME BEHAVIOUR OF CELLULAR FLOWS

This paper studies the intermediate time behaviour of a small random perturbation of a periodic cellular flow. Our main result shows that on time scales shorter than the diffusive time scale, the limiting behaviour of trajectories that start close enough to cell boundaries is a fractional kinetic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2018-03, Vol.46 (2), p.897-955
Hauptverfasser: Hairer, Martin, Iyer, Gautam, Koralov, Leonid, Novikov, Alexei, Pajor-Gyulai, Zsolt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the intermediate time behaviour of a small random perturbation of a periodic cellular flow. Our main result shows that on time scales shorter than the diffusive time scale, the limiting behaviour of trajectories that start close enough to cell boundaries is a fractional kinetic process: a Brownian motion time changed by the local time of an independent Brownian motion. Our proof uses the Freidlin–Wentzell framework, and the key step is to establish an analogous averaging principle on shorter time scales. As a consequence of our main theorem, we obtain a homogenization result for the associated advection diffusion equation. We show that on intermediate time scales the effective equation is a fractional time PDE that arises in modelling anomalous diffusion.
ISSN:0091-1798
2168-894X
DOI:10.1214/17-AOP1196