Ejection-collision orbits in the RTBP

•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-02, Vol.55, p.298-315
Hauptverfasser: Ollé, Mercè, Rodríguez, Òscar, Soler, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue
container_start_page 298
container_title Communications in nonlinear science & numerical simulation
container_volume 55
creator Ollé, Mercè
Rodríguez, Òscar
Soler, Jaume
description •Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ ∈ (0, 0.5] the mass parameter, and taking the big (small) primary with mass 1−μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. As it is well known, for any value of the mass parameter μ ∈ (0, 0.5] and sufficiently restricted Hill regions (that is, for big enough values of the Jacobi constant C), there are exactly four EC orbits. We check their existence and extend numerically these four orbits for μ ∈ (0, 0.5] and for smaller values of the Jacobi constant. We introduce the concept of n-ejection-collision orbits (n-EC orbits) and we explore them numerically for μ ∈ (0, 0.5] and values of the Jacobi constant such that the Hill bounded possible region of motion contains the big primary and does not contain the small one. We study the cases 1 ≤ n ≤ 10 and we analyse the continuation of families of such n-EC orbits, varying the energy, as well as the bifurcations that appear.
doi_str_mv 10.1016/j.cnsns.2017.07.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2024800738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417302642</els_id><sourcerecordid>2024800738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-45d77357cea3506a9a163153a7cf94cffacfc80bde0875ffad5da553c2a5839c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoLvBTEY-tLkzTpwYMu6wcsKLKeQ_Y1xZTarElX8N9v1noWBt48mHmPGUIuKRQUaHXTFTjEIRYlUFlAAmVHZEaVVLksJT9OHEDmQgI_JWcxdpBcteAzcr3sLI7ODzn6vncxscyHjRtj5oZs_LDZ2_r-9ZyctKaP9uJvzsn7w3K9eMpXL4_Pi7tVjkxWY85FIyUTEq1hAipTG1oxKpiR2NYc29Zgiwo2jQUlRVob0RghGJZGKFYjm5Or6e42-K-djaPu_C4M6aUuoeQqhWAqqdikwuBjDLbV2-A-TfjRFPShD93p3z70oQ8NCZQl1-3ksinAt7NBR3R2QNu4kCrQjXf_-vdJrWjK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024800738</pqid></control><display><type>article</type><title>Ejection-collision orbits in the RTBP</title><source>Elsevier ScienceDirect Journals</source><creator>Ollé, Mercè ; Rodríguez, Òscar ; Soler, Jaume</creator><creatorcontrib>Ollé, Mercè ; Rodríguez, Òscar ; Soler, Jaume</creatorcontrib><description>•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ ∈ (0, 0.5] the mass parameter, and taking the big (small) primary with mass 1−μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. As it is well known, for any value of the mass parameter μ ∈ (0, 0.5] and sufficiently restricted Hill regions (that is, for big enough values of the Jacobi constant C), there are exactly four EC orbits. We check their existence and extend numerically these four orbits for μ ∈ (0, 0.5] and for smaller values of the Jacobi constant. We introduce the concept of n-ejection-collision orbits (n-EC orbits) and we explore them numerically for μ ∈ (0, 0.5] and values of the Jacobi constant such that the Hill bounded possible region of motion contains the big primary and does not contain the small one. We study the cases 1 ≤ n ≤ 10 and we analyse the continuation of families of such n-EC orbits, varying the energy, as well as the bifurcations that appear.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.07.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bifurcations ; Collisions ; Ejection ; Ejection-collision orbits ; Invariant manifolds ; Orbits ; Parameters ; Regularization ; Three body problem</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-02, Vol.55, p.298-315</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-45d77357cea3506a9a163153a7cf94cffacfc80bde0875ffad5da553c2a5839c3</citedby><cites>FETCH-LOGICAL-c376t-45d77357cea3506a9a163153a7cf94cffacfc80bde0875ffad5da553c2a5839c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570417302642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ollé, Mercè</creatorcontrib><creatorcontrib>Rodríguez, Òscar</creatorcontrib><creatorcontrib>Soler, Jaume</creatorcontrib><title>Ejection-collision orbits in the RTBP</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ ∈ (0, 0.5] the mass parameter, and taking the big (small) primary with mass 1−μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. As it is well known, for any value of the mass parameter μ ∈ (0, 0.5] and sufficiently restricted Hill regions (that is, for big enough values of the Jacobi constant C), there are exactly four EC orbits. We check their existence and extend numerically these four orbits for μ ∈ (0, 0.5] and for smaller values of the Jacobi constant. We introduce the concept of n-ejection-collision orbits (n-EC orbits) and we explore them numerically for μ ∈ (0, 0.5] and values of the Jacobi constant such that the Hill bounded possible region of motion contains the big primary and does not contain the small one. We study the cases 1 ≤ n ≤ 10 and we analyse the continuation of families of such n-EC orbits, varying the energy, as well as the bifurcations that appear.</description><subject>Bifurcations</subject><subject>Collisions</subject><subject>Ejection</subject><subject>Ejection-collision orbits</subject><subject>Invariant manifolds</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Regularization</subject><subject>Three body problem</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoLvBTEY-tLkzTpwYMu6wcsKLKeQ_Y1xZTarElX8N9v1noWBt48mHmPGUIuKRQUaHXTFTjEIRYlUFlAAmVHZEaVVLksJT9OHEDmQgI_JWcxdpBcteAzcr3sLI7ODzn6vncxscyHjRtj5oZs_LDZ2_r-9ZyctKaP9uJvzsn7w3K9eMpXL4_Pi7tVjkxWY85FIyUTEq1hAipTG1oxKpiR2NYc29Zgiwo2jQUlRVob0RghGJZGKFYjm5Or6e42-K-djaPu_C4M6aUuoeQqhWAqqdikwuBjDLbV2-A-TfjRFPShD93p3z70oQ8NCZQl1-3ksinAt7NBR3R2QNu4kCrQjXf_-vdJrWjK</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Ollé, Mercè</creator><creator>Rodríguez, Òscar</creator><creator>Soler, Jaume</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Ejection-collision orbits in the RTBP</title><author>Ollé, Mercè ; Rodríguez, Òscar ; Soler, Jaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-45d77357cea3506a9a163153a7cf94cffacfc80bde0875ffad5da553c2a5839c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bifurcations</topic><topic>Collisions</topic><topic>Ejection</topic><topic>Ejection-collision orbits</topic><topic>Invariant manifolds</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Regularization</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ollé, Mercè</creatorcontrib><creatorcontrib>Rodríguez, Òscar</creatorcontrib><creatorcontrib>Soler, Jaume</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ollé, Mercè</au><au>Rodríguez, Òscar</au><au>Soler, Jaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ejection-collision orbits in the RTBP</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2018-02</date><risdate>2018</risdate><volume>55</volume><spage>298</spage><epage>315</epage><pages>298-315</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ ∈ (0, 0.5] the mass parameter, and taking the big (small) primary with mass 1−μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. As it is well known, for any value of the mass parameter μ ∈ (0, 0.5] and sufficiently restricted Hill regions (that is, for big enough values of the Jacobi constant C), there are exactly four EC orbits. We check their existence and extend numerically these four orbits for μ ∈ (0, 0.5] and for smaller values of the Jacobi constant. We introduce the concept of n-ejection-collision orbits (n-EC orbits) and we explore them numerically for μ ∈ (0, 0.5] and values of the Jacobi constant such that the Hill bounded possible region of motion contains the big primary and does not contain the small one. We study the cases 1 ≤ n ≤ 10 and we analyse the continuation of families of such n-EC orbits, varying the energy, as well as the bifurcations that appear.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2017.07.013</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-02, Vol.55, p.298-315
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2024800738
source Elsevier ScienceDirect Journals
subjects Bifurcations
Collisions
Ejection
Ejection-collision orbits
Invariant manifolds
Orbits
Parameters
Regularization
Three body problem
title Ejection-collision orbits in the RTBP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ejection-collision%20orbits%20in%20the%20RTBP&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Oll%C3%A9,%20Merc%C3%A8&rft.date=2018-02&rft.volume=55&rft.spage=298&rft.epage=315&rft.pages=298-315&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.07.013&rft_dat=%3Cproquest_cross%3E2024800738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024800738&rft_id=info:pmid/&rft_els_id=S1007570417302642&rfr_iscdi=true