Ejection-collision orbits in the RTBP

•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-02, Vol.55, p.298-315
Hauptverfasser: Ollé, Mercè, Rodríguez, Òscar, Soler, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Analytic results for small mass parameter extended numerically to all values.•Orbits with multiple close approaches to the primary are considered.•Orbits which bifurcate from ejection-collision orbits are studied.•Stable and unstable manifolds of regularized collision studied numerically. In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ ∈ (0, 0.5] the mass parameter, and taking the big (small) primary with mass 1−μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. As it is well known, for any value of the mass parameter μ ∈ (0, 0.5] and sufficiently restricted Hill regions (that is, for big enough values of the Jacobi constant C), there are exactly four EC orbits. We check their existence and extend numerically these four orbits for μ ∈ (0, 0.5] and for smaller values of the Jacobi constant. We introduce the concept of n-ejection-collision orbits (n-EC orbits) and we explore them numerically for μ ∈ (0, 0.5] and values of the Jacobi constant such that the Hill bounded possible region of motion contains the big primary and does not contain the small one. We study the cases 1 ≤ n ≤ 10 and we analyse the continuation of families of such n-EC orbits, varying the energy, as well as the bifurcations that appear.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2017.07.013